• Title/Summary/Keyword: Ultrasonic Intensity

Search Result 165, Processing Time 0.027 seconds

A model to develop the porosity of concrete as important mechanical property

  • Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa;Alaskar, Abdulaziz;Jermsittiparsert, Kittisak;Ho, Lanh Si
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.147-156
    • /
    • 2020
  • This numerical study demonstrates the porosity conditions and the intensity of the interactions with the aggressive agents. It is established that the density as well as the elastic modulus are correlated to ultrasonic velocity The following investigation assessed the effects of cement grade and porosity on tensile strength, flexural and compressive of Ultra High Performance Concrete (UHPC) as a numerical model in PLAXIS 2d Software. Initially, the existing strength-porosity equations were investigated. Furthermore, comparisons of the proposed equations with the existing models suggested the high accuracy of the proposed equations in predicting, cement grade concrete strength. The outcome obtained showed a ductile failure when un-corroded reinforced concrete demonstrates several bending-induced cracks transfer to the steel reinforcement. Moreover, the outcome also showed a brittle failure when wider but fewer transverse cracks occurred under bending loads. Sustained loading as well as initial pre-cracked condition during the corrosion development have shown to have significant impact on the corrosion behavior of concrete properties. Moreover, greater porosity was generally associated with lower compressive, flexural, and tensile strength. Higher cement grade, on the other hand, resulted in lower reduction in concrete strength. This finding highlighted the critical role of cement strength grade in determining the mechanical properties of concrete.

The Analysis of Fatigue Behavior Using the Delamination Growth Rate(dAD/da) and Fiber Bridging Effect Factor(FBE) in Al/GERP Laminates (층간분리성장률(dAD/da)과 섬유가교효과인자(FBE)를 이용한 Al/GFRP 적층재의 피로거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.317-326
    • /
    • 2003
  • The influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al/GFRP laminate such as the wing section was investigated. The main objective of this study was to evaluate the relationship between crack profile and delamination behavior. And a propose parameter on the delamination growth rate(d $A_{D}$/da) of Al/GFRP laminates with a saw-cut using relationship between delamination area( $A_{D}$) and cycles(N), crack length(a), stress intensity factor range($\Delta$K). Also, the fiber bridging effect factor( $F_{BE}$ ) was propose that the fiber bridging modification factor($\beta$$_{fb}$ ) to evaluate using the delamination growth rate(d $A_{D}$/da). The shape and size of the delamination zone formed along the fatigue crack between aluminum alloy sheet. Class fiber-adhesive layer were measured by an ultrasonic C-scan image. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip. It represents that relationship between crack length and delamination growth rate(d $A_{D}$/da) were interdependent by reciprocal action, therefore it's applicable present a model for the delamination growth rate(dA/sib D//da) in Al/GFRP laminates.minates.s.

Comparative analysis of the wind characteristics of three landfall typhoons based on stationary and nonstationary wind models

  • Quan, Yong;Fu, Guo Qiang;Huang, Zi Feng;Gu, Ming
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.269-285
    • /
    • 2020
  • The statistical characteristics of typhoon wind speed records tend to have a considerable time-varying trend; thus, the stationary wind model may not be appropriate to estimate the wind characteristics of typhoon events. Several nonstationary wind speed models have been proposed by pioneers to characterize wind characteristics more accurately, but comparative studies on the applicability of the different wind models are still lacking. In this study, three landfall typhoons, Ampil, Jongdari, and Rumbia, recorded by ultrasonic anemometers atop the Shanghai World Financial Center (SWFC), are used for the comparative analysis of stationary and nonstationary wind characteristics. The time-varying mean is extracted with the discrete wavelet transform (DWT) method, and the time-varying standard deviation is calculated by the autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model. After extracting the time-varying trend, the longitudinal wind characteristics, e.g., the probability distribution, power spectral density (PSD), turbulence integral scale, turbulence intensity, gust factor, and peak factor, are comparatively analyzed based on the stationary wind speed model, time-varying mean wind speed model and time-varying standard deviation wind speed model. The comparative analysis of the different wind models emphasizes the significance of the nonstationary considerations in typhoon events. The time-varying standard deviation model can better identify the similarities among the different typhoons and appropriately describe the nonstationary wind characteristics of the typhoons.

Mn-Modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3] Single Crystals for High Power Piezoelectric Transducers

  • Oh, Hyun-Taek;Lee, Jong-Yeb;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.150-157
    • /
    • 2017
  • Three types of piezoelectric single crystals [PMN-PT (Generation I $[Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3]$), PMN-PZT (Generation II $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$), PMN-PZT-Mn (Generation III)] were grown by the solid-state single crystal growth (SSCG) method, and their dielectric and piezoelectric properties were measured and compared. Compared to (001) PMN-PT and PMN-PZT single crystals, the (001) PMN-PZT-Mn single crystals exhibited a higher transition temperature between the rhombohedral and tetragonal phases ($T_{RT}=144^{\circ}C$), as well as a higher coercive electric field ($E_C=6.3kV/cm$) and internal bias field ($E_I=1.6kV/cm$). The (011) PMN-PZT-Mn single crystals showed the highest coercive electric field ($E_C=7.0kV/cm$), and the highest stability of $E_C$ and $E_I$ during 60 cycles of polarization measurement. These results demonstrate that both Mn doping (for higher electromechanical quality factor ($Q_m$)) and a (011) crystallographic orientation (for higher coercive electric field and stability) are necessary for high power transducer applications of these piezoelectric single crystals. Specifically, the (011) PMN-PZT-Mn single crystal (Gen. III) had the highest potential for application in the fields of SONAR transducers, high intensity focused ultrasound (HIFU), ultrasonic motors, and others.

A Study of Quantitative Snow Water Equivalent (SWE) Estimation by Comparing the Snow Measurement Data (적설 관측자료 비교를 통한 정량적 SWE 산출에 관한 연구)

  • Ro, Yonghun;Chang, Ki-Ho;Cha, Joo-Wan;Chung, Gunhui;Choi, Jiwon;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.269-282
    • /
    • 2019
  • While it is important to obtain the accurate information on snowfall data due to the increase in damage caused by the heavy snowfall in the winter season, it is not easy to observe the snowfall quantitatively. Recently, snow measurements using a weighing precipitation gauge have been carried out, but there is a problem that high snowfall intensity results in low accuracy. Also, the observed snowfall data are sensitive depending on wind speed, temperature, and humidity. In this study, a new process of quality control for snow water equivalent (SWE) data of the weighing precipitation gauge were proposed to cover the low accuracy of snow data and maximize the data utilization. Snowfall data (SWE) observed by Pluvio, Parsivel, snow-depth meter using laser or ultrasonic, and rainfall gauge in Cloud Physics Observation Site (CPOS) were compared and analyzed. Applying the QC algorithm including the use of number of hydrometeor particles as reference, the increased SWE per the unit time was determined and the data noise was removed and marked by flag. The SWE data converted by the number concentration of hydrometeor particles are tested as a method to restore the QC-removed data, and show good agreement with those of the weighing precipitation gauge, though requiring more case studies. The three events data for heavy snowfall disaster in Pyeongchang area was analyzed. The SWE data with improved quality was showed a good correlation with the eye-measured data ($R^2$ > 0.73).

Factors Related to Successful Energy Transmission of Focused Ultrasound through a Skull : A Study in Human Cadavers and Its Comparison with Clinical Experiences

  • Jung, Na Young;Rachmilevitch, Itay;Sibiger, Ohad;Amar, Talia;Zadicario, Eyal;Chang, Jin Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.6
    • /
    • pp.712-722
    • /
    • 2019
  • Objective : Although magnetic resonance guided focused ultrasound (MRgFUS) has been used as minimally invasive and effective neurosurgical treatment, it exhibits some limitations, mainly related to acoustic properties of the skull barrier. This study was undertaken to identify skull characteristics that contribute to optimal ultrasonic energy transmission for MRgFUS procedures. Methods : For ex vivo skull experiments, various acoustic fields were measured under different conditions, using five non-embalmed cadaver skulls. For clinical skull analyses, brain computed tomography data of 46 patients who underwent MRgFUS ablations (18 unilateral thalamotomy, nine unilateral pallidotomy, and 19 bilateral capsulotomy) were retrospectively reviewed. Patients' skull factors and sonication parameters were comparatively analyzed with respect to the cadaveric skulls. Results : Skull experiments identified three important factors related skull penetration of ultrasound, including skull density ratio (SDR), skull volume, and incidence angle of the acoustic rays against the skull surface. In clinical results, SDR and skull volume correlated with maximal temperature (Tmax) and energy requirement to achieve Tmax (p<0.05). In addition, considering the incidence angle determined by brain target location, less energy was required to reach Tmax in the central, rather than lateral targets particularly when compared between thalamotomy and capsulotomy (p<0.05). Conclusion : This study reconfirmed previously identified skull factors, including SDR and skull volume, for successful MRgFUS; it identified an additional factor, incidence angle of acoustic rays against the skull surface. To guarantee successful transcranial MRgFUS treatment without suffering these various skull issues, further technical improvements are required.

FATIGUE DESIGN OF BUTT-WELDED TUBULAR JOINTS

  • Kim, D. S.;S. Nho;F. Kopp
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.127-132
    • /
    • 2002
  • Recent deepwater offshore structures in Gulf of Mexico utilize butt welded tubular joints. Application of welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical because the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimating the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves specified in the codes and standards. Applying the stress concentration factor of the welded structure to S-N approach often results in very conservative assessment because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fracture mechanics and fitness for service (FFS) technology have been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves to be used and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. An attempt was made to develop set of S-N curves based on fracture mechanics approach by considering non-uniform stress distribution and a threshold stress intensity factor. Series of S-N curves generated from this approach were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02"). Similar comparison with API X′ was made for tubular joint.. These initial crack depths are larger than the limits of inspection by current Non-destructive examination (NDE) means, such as Automatic Ultrasonic Inspection (AUT). Thus a safe approach can be taken by specifying acceptance criteria that are close to limits of sizing capability of the selected NDE method. The comparison illustrates conservatism built into the S-N design curve.

  • PDF

Color Changes of Multi-Bubble Sonoluminescence Due to Metallic Ions in Water (금속 이온이 다중기포 Sonoluminescence 스펙트럼에 미치는 영향 연구)

  • Han, Moon-Su;Lee, Jae-Wook;Baek, Seung-Chan;Baek, Jung-Hwan;Kim, Young-H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.111-117
    • /
    • 2010
  • Sonoluminescence (SL) is the light emitting phenomenon accompanied with ultrasonic cavitation in liquid. It attracts many interests because physics behind it remains uncertain and few applications have appeared. It has been known that the color of SL changes in solutions which include metallic ions. In the present work, colors of SL in alkali metallic and alkaline earth metallic ions were considered. RGB component was used to analyze the color of SL. By using RGB component, it was found that color of SL in metallic solution can be resolved into color of SL in pure water and flame color of metal which is different from high intensity color of line spectrum of alkaline earth metal. From this result, influence of metallic ion on SL and the temperature on violent collapsing of cavitation bubble was discussed.

THE ASSESSMENT OF NOISE IN THE PEDIATRIC DENTAL CLINICS (소아치과 진료실에서 발생하는 소음 평가)

  • Kwon, Bo-Min;Lee, Ji-Hyun;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • Dental professionals are exposed to various occupational risks, among which the problem of hearing damage has been newly revealed. There have been some researches reporting that noise occurring in a dental office exceeds the Occupational Safety and Health Act (OSHA) Standards. Especially, the pediatric dentists are repeatedly exposed to an additional noise source called the crying sound of children in addition to all kinds of noises from dental instruments. Accordingly, this study intended to investigate the noise environment likely to affect pediatric dentists and to examine the possibility of resultant hearing damages. The level of noise was measured respectively, when various dental instruments (ultrasonic scaler, high-speed handpiece, low-speed handpiece) are operated, when children are crying, and when both occasions take place simultaneously (from the distance of 30 cm) with a portable noise meter. And the daily duration of pediatric dentists exposed to the noise environment was surveyed. The results were compared with the standard value of noise threshold of NIOSH, OSHA, and that of hearing damage of CRA News letter respectively. Considering the intensity and exposure time, the noise environment of pediatric dentists exceeds the allowable noise threshold values. Even only one exposure to crying child was likely to lead to permanent hearing damage. Comparatively, pediatric dentists have a higher risk for occupational hearing damages, and some active measures are thought highly desirable to minimize it.

Intensity of Intraoperative Spinal Cord Hyperechogenicity as a Novel Potential Predictive Indicator of Neurological Recovery for Degenerative Cervical Myelopathy

  • Guoliang Chen;Fuxin Wei;Jiachun Li;Liangyu Shi;Wei Zhang;Xianxiang Wang;Zuofeng Xu;Xizhe Liu;Xuenong Zou;Shaoyu Liu
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1163-1171
    • /
    • 2021
  • Objective: To analyze the correlations between intraoperative ultrasound and MRI metrics of the spinal cord in degenerative cervical myelopathy and identify novel potential predictive ultrasonic indicators of neurological recovery for degenerative cervical myelopathy. Materials and Methods: Twenty-two patients who underwent French-door laminoplasty for multilevel degenerative cervical myelopathy were followed up for 12 months. The Japanese Orthopedic Association (JOA) scores were assessed preoperatively and 12 months postoperatively. Maximum spinal cord compression and compression rates were measured and calculated using both intraoperative ultrasound imaging and preoperative T2-weight (T2W) MRI. Signal change rates of the spinal cord on preoperative T2W MRI and gray value ratios of dorsal and ventral spinal cord hyperechogenicity on intraoperative ultrasound imaging were measured and calculated. Correlations between intraoperative ultrasound metrics, MRI metrics, and the recovery rate JOA scores were analyzed using Spearman correlation analysis. Results: The postoperative JOA scores improved significantly, with a mean recovery rate of 65.0 ± 20.3% (p < 0.001). No significant correlations were found between the operative ultrasound metrics and MRI metrics. The gray value ratios of the spinal cord hyperechogenicity was negatively correlated with the recovery rate of JOA scores (ρ = -0.638, p = 0.001), while the ventral and dorsal gray value ratios of spinal cord hyperechogenicity were negatively correlated with the recovery rate of JOA-motor scores (ρ = -0.582, p = 0.004) and JOA-sensory scores (ρ = -0.452, p = 0.035), respectively. The dorsal gray value ratio was significantly higher than the ventral gray value ratio (p < 0.001), while the recovery rate of JOA-motor scores was better than that of JOA-sensory scores at 12 months post-surgery (p = 0.028). Conclusion: For degenerative cervical myelopathy, the correlations between intraoperative ultrasound and preoperative T2W MRI metrics were not significant. Gray value ratios of the spinal cord hyperechogenicity and dorsal and ventral spinal cord hyperechogenicity were significantly correlated with neurological recovery at 12 months postoperatively.