• 제목/요약/키워드: Ultrasonic Attenuation Coefficient

검색결과 84건 처리시간 0.033초

피질골판이 해면질골의 초음파 특성에 미치는 영향 (Influence of Cortical Endplates on Ultrasonic Properties of Trabecular Bone)

  • 김윤미;이강일
    • 비파괴검사학회지
    • /
    • 제35권2호
    • /
    • pp.103-111
    • /
    • 2015
  • 본 연구에서는 골절 위험도가 높은 대퇴골의 두꺼운 피질골판이 해면질골의 초음파 특성에 미치는 영향을 조사하였다. 이를 위해 소의 대퇴골을 이용하여 12개의 해면질골을 제작하였으며, 피질골과 유사한 밀도 및 음속을 갖는 아크릴을 이용하여 피질골판을 모사하는 1.25, 1.80, 및 2.75 mm의 두께를 갖는 아크릴판을 제작하였다. 해면질골 양면에 부착된 아크릴판의 두께가 증가하더라도 음속과 해면질골의 겉보기 골밀도 사이에 Pearson 상관계수는 0.80-0.86의 값을 가지며, 높은 상관관계가 존재하는 것으로 나타났다. 또한 0.5 MHz에서 측정된 감쇠계수와 해면질골의 겉보기 골밀도 사이에 Pearson 상관계수는 0.84-0.91의 값을 가지며, 높은 상관관계가 존재하는 것으로 나타났다. 이와 같은 결과로부터 종골에 비해 상대적으로 더 두꺼운 피질골판을 갖는 대퇴골에서 측정된 음속 및 특정 주파수에서의 감쇠계수는 대퇴골의 골밀도를 예측하기 위한 지표로서 이용될 수 있음을 알 수 있다.

펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가 (Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test)

  • 오승규;황영택;이원
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

Alloy718 마찰접합조건의 최적화와 비파괴 평가 (Optimization of Friction Welded Joint Conditions in Alloy718 and the Nondestructive Evaluation)

  • 권상우;공유식;김선진
    • 한국해양공학회지
    • /
    • 제22권1호
    • /
    • pp.53-57
    • /
    • 2008
  • Friction welding was performed to investigate mechanical properties for Ni-base superalloy with 15 mm diameter solid bar. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, impact energy test, Vickers hardness surveys of the bond of area and heat affected zone. And then, the nondestructive technique to evaluate the weld quality was carried out by acoustic emission(AE) and ultrasonic attenuation coefficient. The tensile strength of the friction welded joint was shown up to 90 % of the Alloy718 base metal under the condition of the heating time over 5 sec. The optimal welding conditions were n=2,000 rpm, $P_1=200$ MPa, $P_2=200$ MPa, $t_1=8$ sec and $t_2=5$ sec when the total upset length was 4.4 mm.

Alloy718 동종 마찰용접재의 기계적 특성에 관하여 (On Mechanical Properties of Similar Friction Welded in Alloy718)

  • 공유식;김선진;권상우;김정한;박노광
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.205-208
    • /
    • 2006
  • Similar friction welding were produced using 15 mm diameter solid bar in Ni-base superalloy(alloy718) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, AE total counts and ultrasonic attenuation coefficient. The specimens were tested as welded, not heat-treated. The tensile strength of the friction welded joints was increased up to 90% of the alloy718 base metal under the condition of all heating time. Optimal welding conditions were n=2,000 (rpm), $P_1=200$ (MFa), $P_2=200$ (MFa), $t_1=8$ (s), $t_2=5$ (s) when the total upset length is 4.4(mm). The weld interface of similar friction welded steel bars was mixed strongly.

  • PDF

873~1,273 K에서 열화된 강화흑연강(Compacted Graphite Iron, CGI)의 초음파특성 (Ultrasonic Characteristics of Degraded Compacted Graphite Iron from 873 to 1,273 K)

  • 이수철;남기우
    • 동력기계공학회지
    • /
    • 제17권4호
    • /
    • pp.72-78
    • /
    • 2013
  • Compacted graphite iron 340 was carried out the heat treatment from 873 to 1,273 K. Compacted graphite iron 340 was evaluated relationship between the sound velocity, the attenuation coefficient and the tensile strength. The obtained results are as following. The signal strength of C scan images were weak according to increasing of heat treatment temperature and time. The amplitude of A scan and B scan was also low. This can be cause that the graphite was grown into the type of vermicular, and the many of grain boundary with ultrasound scattering were increase. The sound velocity was depend upon the heat treatment temperature and time, the attenuation coefficient had nothing to do with the temperature and time. The higher the heat treatment temperature, the tensile strength and the sound velocity were decreased. However, the tensile strength was proportional to the sound velocity. The higher tensile strength, the faster the sound velocity.

스테인리스 304L강의 수소장입시간에 대한 비파괴기법 적용 (Application of Nondestructive Technique on Hydrogen Charging Times of Stainless Steel 304L)

  • 이진경;황승국;이상필;배동수;손영석
    • 동력기계공학회지
    • /
    • 제19권5호
    • /
    • pp.60-66
    • /
    • 2015
  • Embrittlement of material by hydrogen charging should be cleared for safety of storage vessel of hydrogen and components deal with hydrogen. A stainless steel is generally used as materials for hydrogen transportation and storage, and it has a big advantage of corrosion resistance due to nickel component in material. In this study, microscopic damage behavior of stainless steel according to the hydrogen charging time using nondestructive evaluation was studied. The surface of stainless steel became more brittle as the hydrogen charging time increased. The parameters of nondestructive evaluation were also changed with the embrittlement of stainless steel surface by hydrogen charging. Ultrasonic test, which is the most generalized nondestructive technique, was applied to evaluate the relationship between the ultrasonic wave and mechanical properties of stainless steel by hydrogen charging. The attenuation coefficient of ultrasonic wave was increased with hydrogen charging time because of surface embrittlement of stainless steel. In addition, acoustic emission test was also used to study the dynamic behavior of stainless steel experienced hydrogen charging. AE event at the hydrogen charged specimen was obviously decreased at the plastic zone of stress-strain curves, while the number of event for the specimen of hydrogen free was dramatically generated when compared with the specimens underwent hydrogen charging.

초음파에 의한 알루미늄 소결체 설계를 위한 탄성계수 예측 (Elastic Modulus Prediction for Design of Sintered Aluminum by Ultrasonic)

  • 남영현
    • 대한기계학회논문집A
    • /
    • 제32권7호
    • /
    • pp.590-596
    • /
    • 2008
  • The ultrasonic velocities of sintered aluminum with varying density were measured in order to deduce the mechanical properties for optimum design of the sintered aluminum. Specimens with different densities were prepared by the plasma activated sintering machine. The density distribution of sintered aluminum becomes partially inhomogeneous because of the friction between the powder and the die during compaction. The elastic moduli are increased as the ultrasonic velocity is increased. Furthermore, Poisoon's ratio is depending on not only the density but also the size and distribution of voids. As the specimen's thickness increases, the center frequency in the frequency spectrum of the reflection wave is shifted to the low frequency. The attenuation coefficient of ultrasonic wave is decreased inversely as the density increased.

초음파와 Barkhausen Noise에 의한 강의 연.취성천이온도 예측 (Prediction of Fracture Appearance Transition Temperature(FATT) to Steel by Ultrasonic and Barkhausen Noise Method)

  • 남영현;성운학
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1215-1222
    • /
    • 1999
  • It is advantageous to use an NDE method to assess the mechanical properties of materials since the conventional method is time-consuming and sometimes requires cutting of sample from the material/component. This paper shows that the ultrasonic and the Barkhausen noise(BHN) methods can be used to accurately characterize forged reactor vessels. The attenuation coefficient of the ultrasonic wave was changed with heat treatment temperature and condition[as-quenched, tempered, PWHT]. The RMS[root mean square] voltage of Barkhausen noise depended on heat treatment temperature and conditions. The fracture appearance transition temperature(FATT) can be predicted using nondestructive evaluation methods.

초음파법을 이용한 1Cr-1Mo-0.25V강의 열화도 평가에 관한 연구 (A Study on the Evaluation of Material Degradation of 1Cr-1Mo-0.25V Steel using Ultrasonic Techniques)

  • 김정표;석창성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.78-83
    • /
    • 2001
  • It's required mechanical properties of in-service facilities to maintain safety operation in power plants as well as chemical plants. In this study the four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method at $630^{\circ}C$. Ultrasonic tests, tensile tests, $K_{IC}$ tests and hardness tests were performed in order to evaluate the degree of degradation of the material. The mechanical properties were decreased as degraded, but the attenuation coefficient and the harmonic generation level of a ultrasonic signal were increased. Expecially the nonlinear parameter of the signal is sensitive and will be a good parameter to evaluate the material degradation.

  • PDF

초음파 Fractography에 의한 파괴속도의 첨밀측정을 위한 최적주파수 선정에 관한 연구 (A Study on the Optimal Frequency for Precise Measurement of Fracture Velocity by Ultrasonic Fractography)

  • 이범성;한응교;송창섭
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.154-160
    • /
    • 1993
  • A mothod to decide the optimal frequency for the fracture velocity measurement by ultrasonic fractography is presented. A theoretical formula to decide the optimal frequency for ultrasonic fractography testing is made and it is compared with experimental value. According to the formula the optimal frequency is shown to be depending on the attenuation coefficient and size(width) of the specimen. In the case of PMA specimen with ligament 43mm the theoretical value for the optimal frequency is about 260 KHz and it is good agreement with experimental value.

  • PDF