• 제목/요약/키워드: Ultrafine particles

검색결과 165건 처리시간 0.023초

Comparison of Nano Particle Size Distributions by Different Measurement Techniques

  • Bae, Min-Suk;Oh, Joon-Seok
    • 한국대기환경학회지
    • /
    • 제26권2호
    • /
    • pp.219-233
    • /
    • 2010
  • Understanding the Nano size particles is of great interest due to their chemical and physical behaviors such as compositions, size distributions, and number concentrations. Therefore, accurate measurements of size distributions and number concentrations in ultrafine particles are getting required because expected losses such as diffusion for the instrument system from ambient inlet to detector are a significant challenge. In this study, the data using the computed settling losses, impaction losses, diffusion losses for the sampling lines (explored different sampling line diameters, horizontal length, number of bending, line angles, flow rates with and without a bypass), and diffusion losses for the Scanning Mobility Particle Sizers are examined. As expected, the settling losses and impaction losses are very minor under 100 nm, however, diffusion loss corrections for the sampling lines and the size instrument make a large difference for any measurement conditions with high numbers of particles smaller mobility size. Both with and without the loss corrections, which can affect to size distributions and number concentrations are described. First, 80% or more of the smallest particles (less than 10 nm) can be lost in the condition of a flow rate of 0.3 liter per minute and the length of sampling line of 1.0 m, second, total number concentrations of measurements are quite significantly affected, and the mode structure of the size distribution changes dramatically after the loss corrections applied. With compared to the different measurements, statistically diffusion loss corrections yield a required process of the ambient particle concentrations. Based on the current study, as an implication, a possibility of establishing direct revelation mechanisms is suggested.

실제 대기의 광화학 반응 챔버로 사용되는 테플론 백의 오염도 평가 (Wall Contamination of Teflon Bags Used as a Photochemical Reaction Chamber of Ambient Air)

  • 이승복;배귀남;이영미;문길주
    • 한국입자에어로졸학회지
    • /
    • 제9권3호
    • /
    • pp.149-161
    • /
    • 2013
  • Experiments on photochemical reactions of purified air alone in an indoor smog chamber were carried out after flushing Teflon bags with purified air for many hours in order to check the level of contamination on the chamber wall. Ozone concentrations were linearly increased from <4 ppb up to about 8 ppb with irradiation time for four hours. Outgassing of NOx from the chamber wall was found to be less than 1 ppb. New ultrafine particles were formed and grown up to about 70 nm during the photochemical reactions, and then total number and mass concentrations of particles were increased from <10 particles/$cm^3$ up to about 4,000 particles/$cm^3$ and $1.3{\mu}g/m^3$, respectively. The wall conditions of these Teflon bags flushed with purified air might not severly affect the chamber experimental results for photochemical reactions of polluted urban ambient air. The difference of gaseous species between two chambers was 2.4 ppb of ozone at most, indicating that the wall cleaning performance of two chambers was nearly similar.

도로변 측정을 이용한 2행정 스쿠터의 대기오염물질 배출특성 연구 (Emission Characteristics of a Passing Two-stroke Scooter using at a Roadside Measurement)

  • 우대광;이승복;배귀남;임철수;김태성
    • 한국대기환경학회지
    • /
    • 제27권6호
    • /
    • pp.663-671
    • /
    • 2011
  • Although a scooter is a convenient transportation means for a short distance traveling with a light package in the congested urban center, it might be one of the significant sources of air pollutants to which many people can easily be exposed during its passing-by. In this paper, we measured concentrations of gases and particles emitted from a scooter at roadside with no other traffic. To understand the characteristics of scooter emissions with respect to driving speed (idling, 30 km/h) at the roadside, total particle number concentration, particle size distribution, average surface area of particles deposited in the alveolar region, and concentrations of black carbon, CO, and $NO_x$ were measured. The concentrations of the particle number, surface area of deposited particles, CO, and $NO_x$ were highly fluctuated in the scooter's idling condition. The trends of particle number concentration, CO, and $NO_x$ generation were similar to one another. When the scooter started to move, all of $NO_x$, CO and particle number concentrations increased and after it passed by at the speed of 30 km/h, the concentration peaks of the particles and gases appeared at the same time. Unimodal size distribution with ~70 and ~93 nm mode diameters was observed for the idling and cruising condition, respectively. From this work, we found that emission from a passing vehicle could be characterized using a roadside monitoring technique.

습식 환원법에 의한 니켈 미분말의 제조 (Preparation of Ultrafine Nickel Powders by Wet Reduction Process)

  • 이윤복;문영태;신동우;김광호
    • 한국재료학회지
    • /
    • 제12권10호
    • /
    • pp.803-808
    • /
    • 2002
  • Nickel powders were prepared from nickel chloride solution by wet reduction process, and the size control of the particles was investigated with reactant concentration, dispersant agent, and the addition of ethanol as an organic solvent in NiCl$_2$ aqueous solution. The size of the particle decreased with the increase of nickel chloride concentration. Their average particle size were 1.9$\mu\textrm{m}$, 1.6$\mu\textrm{m}$ and $1.5\mu\textrm{m}$ with 0.5M, 0.8M and 1.0M of nickel chloride concentration respectively. The spherical particle was easily controlled by the addition of ethanol as an organic solvent. Especially, in 30 vol% of ethanol, the average particle size and specific surface area were about 0.2$\mu\textrm{m}$ and 8.98m$^2$/g, respectively.

나노 독성의 개념 및 나노입자에 대한 위해성 평가의 필요성 (The Concepts of Nanotoxicology and Risk Assessment of the Nanoparticles)

  • 맹승희;유일재
    • Toxicological Research
    • /
    • 제21권2호
    • /
    • pp.87-98
    • /
    • 2005
  • Human exposure to nano-sized particles (NSP) has increased over the last century with anthropogenic sources, and the rapid development of nanotechnology becomes an another source of such exposure. Information regarding the safety of nanotechnology and its product, nanoparticles, is urgently needed when assuming exposure through inhalation, oral intake, and penetration across skin is ever increasing as growing nanotechnology rapidly. The recent advancement of biokinetic studies with NSP and newer epidemiologic and toxicologic studies with ultrafine particles can be the basis for the nanotoxicology. Some concepts of nanotoxicology can be known from the results of these results. Specific small size of NSP, when inhaled, facilitates deposition by difusional mechanism in all regions of the respiratory tract and uptake into cells, ranscytosis across epithelial and endothelial cells into the blood and lymph circulation to reach target sites. Translocation along axons and dendrites of neuron makes an access to CNS and ganglia. These biokinetics are dependent on NSP surface chemistry. Risk assessments of NSP include appropriate and relevant doses/concentration selections, the increase effects in the organism and the benefits of possible desirable effects. An interdisciplinary team approach is desirable for nanotoxicology research and an appropriate risk assessment.

Carbon rich fly ash and their nanostructures

  • Salah, Numan;Habib, Sami S.;Khan, Zishan H.;Alshahrie, Ahmed;Memic, Adnan;Al-ghamdi, Attieh A.
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.23-31
    • /
    • 2016
  • Carbon rich fly ash was recently reported to have compositions that are ideal for use as a precursor and catalyst for carbon nanotube growth. This fly ash powder is mostly composed of pure carbon, predominantly present as sp2. In this work, the effect of sonication time on the morphology and structural properties of carbon rich fly ash particles is reported. The obtained results show that ultrasound treatment is an effective tool for producing ultrafine particles/fragments with higher porosity, which might be suitable for the adsorption of gasses. Moreover, carbon nanoparticles (CNPs) of this fly ash were produced in parallel using the ball milling technique, and were evaluated as reinforcements for epoxy based composites. These CNPs have almost spherical shapes with particle sizes of around 30 nm. They were found to have strong C=O carbonyl group bonds, which might be generated during the ball milling process. The tensile testing results of a fly ash CNP reinforced epoxy composite showed significant improvements in the mechanical properties, mainly in the stiffness of the polymer. The stiffness value was increased by around 23% of that of neat epoxy. These CNPs with chemically active groups might also be useful for other applications.

탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성 (Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites)

  • 권지운;김성호;장미연
    • 한국산업보건학회지
    • /
    • 제30권1호
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.

기상반응(CVD)법 의한 실리카 미분말의 제조 (Preparation of Ultrafine Silica Powders by Chemical Vapor Deposition Process)

  • 최은영;이윤복;신동우;김광호
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.850-855
    • /
    • 2002
  • Silica powders were prepared from $SiCl_4$-$H_2$O system by chemical vapor deposition process, and investigated on size control of the products with reaction conditions. The products were amorphous and nearly spherical particles with 130nm~50nm in size. The size distribution became narrow with the increase of [$H_2$O]/[SiCl$_4$] concentration ratio. The particle size decreased with the increase of reaction temperature, [$H_2$O]/[SiCl$_4$] concentration ratio and total flow rate. The specific surface area measured by BET method was about three times larger than that of electron microscope method.

합성마그네타이트를 이용한 유상자성유체의 제조 및 분산특성 (Preparation and Dispersion Characteristics of Oil-based Magnetic Fluids with Synthesized Magnetite)

  • 조명호;김만;민동준;오재현
    • 한국세라믹학회지
    • /
    • 제33권8호
    • /
    • pp.901-908
    • /
    • 1996
  • The oil-based magnetic fluids were prepared with synthesized ultrafine magnette by allowing surfactactants such as sodium oleate and aliquat 336 to adsorb on the surface of magnetite particles. The dispersion ratio of oil-based magnetic fluids was higher than 90% when the amount of sodium oleate and aliqua 336 were more than 2.63$\times$10-2 mol and 6.56$\times$10-3 mol for 20g of magnetite respectively. The dispersion ratio of oil-based magnetic fluids with the amount of secondary surfactant addition was higher than 90% when oil-based magnetic fluids were prepared with aliquat 336 of cationic type. However oil-based magnetic fluids prepared with surfactants of anionic and nonionic type showed lower dispersion than whose with cationic surfac-tants.

  • PDF

미국 LA 지역 오염발생지와 영향권에서의 초미세입자 크기분포에 대한 시간적 고찰 (Temporal trend in size distribution of ultrafine particles in source and receptor sites of the Los Angeles Basin)

  • 김성헌
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2002년도 춘계학술대회 논문집
    • /
    • pp.39-40
    • /
    • 2002
  • 대기 중 초미세입자 (0.1 마이크론 이하)들을 최근 건강 위해성에 대한 연관성이 추정됨에 따라 도시지역 초미세입자에 대한 다각적인 연구의 필요성이 증대하고 있다. 초미세입자들은 전체 질량농토에 대한 그 기여도가 매우 낮아 수 농도와 크기분포에 의하여 보다 잘 표현되지만 도시지역 초미세입자의 수 농도 크기분포에 대한 자료는 아직 부족한 실정이다. (중략)

  • PDF