• Title/Summary/Keyword: Ultrafine particle

Search Result 144, Processing Time 0.034 seconds

Production and Mechanical Properties of Mg-Zn-Ce Amorphous Alloys by Dispersion of Ultrafine hcp-Mg Paticles (hcp-Mg 입자분산형 Mg-Zn-Ce계 비정질합금의 제조와 기계적 성질)

  • Kim, Seong-Gyu;Park, Heung-Il;Kim, U-Yeol;Jo, Seong-Myeong;Kim, Yeong-Hwan;Inoue, A.;Masumoto, T.
    • Korean Journal of Materials Research
    • /
    • v.4 no.8
    • /
    • pp.847-854
    • /
    • 1994
  • An amorphous single phase and coexistent amorphous and hcp-Mg phases in Mg-Zn-Ce system were found to form in the composition ranges of 20 to 40% Zn, 0 to 10% Ce and 5 to 20% Zn, 0 to 5% Ce, respectively. A $Mg_{85}Zn_{12}Ce_{3}$ amorphous alloy containing nanoscale hcp-Mg particles was found to form either by melt spinning or by heat treatment of melt -spun ribbon. The particle size of the hcp-Mg phase can be controlled in the range of 4 to 20 nm. The mixed phase alloy prepared thus has a good bending ductility and exhibits high ultimate tensile strength($\sigma_{B}$) ranging from 670 to 930 MPa and fracture elongation($\varepsilon_{f}$) of 5.2 to 2.0%. The highest specific strength($\sigma_{B}$/density =$\sigma_{s}$)$3.6 \times 10^5N \cdot m/kg$. It should be noted that the highest values of flB, US and ?1 are considerably higher than those (690MPa,$2.5 \times 10^5N \cdot m/kg$and 2.5%) for amorphous Mg-Zn-Ce alloys. The increase of the mechanical strengths by the formation of the mixed phase structure is presumably due to a dispersion hardening of the hcp supersaturated solution which has the hardness higher than that of the amorphous phase with the same composition.

  • PDF

Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel ((Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성)

  • Nam, H.D.;Choi, W.S.;Lee, B.H.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

  • PDF

Preparation and Characterization of Hydrothermal BaTiO3 Powders and Ceramics (수열합성법에 의한 BaTiO3분말합성 및 소결체의 제조)

  • 이병우;최경식;신동우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.577-582
    • /
    • 2003
  • BaTiO$_3$ fine powders were synthesized by hydrothermal process from peroxo-coprecipitate precursors. The peroxo-coprecipitates were obtained by addition of the BaCl$_2$, TiCl$_4$, and $H_2O$$_2$ aqueous solution to an ammonium solution. Hydrothermal reaction was conducted at various reaction temperatures, times and pH ranges. Unlike the conventional hydrothermal synthesis which needs highly alkaline condition over pH 13 with KOH or NaOH, the present method offered well-developed crystalline (perovskite) BaTiO$_3$ powders synthesized below pH 12 with use of ammonium solution. It was found that the phase-pure fine powders were formed at temperatures as low as 11$0^{\circ}C$ and the properties of the powders synthesized over 13$0^{\circ}C$ were almost same regardless of the reaction time. BET surface area of the prepared powder was as high as 76 $m^2$/g and the calculated particle (particulate) size was below 20 nm. The ultrafine particulates formed weak agglomerates. The microstructure and dielectric properties of BaTiO$_3$ ceramics sintered at the temperature range of 1150~125$0^{\circ}C$ were evaluated.

A Study on the Preparation of Aluina & Titania Sols for Coatings (코팅용 알루미타, 티타니아솔 제조에 관한 연구)

  • Kim, Chu-Hui;Choe, Hyeong-Su;Jo, Yeong-Sang;Im, Jong-Ju
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.319-328
    • /
    • 1994
  • Aluminium and titanium precursors containing $\beta$-diketonate ligands were used for the synthesis of polymeric sols of alumina and titania by sol-gel methods. To prepare polymeric sols by solgel processing, we synthesized modified precursors having chelating organic ligands. With these precursors it was found to be possible to control both hydrolysis and polycondensation reaction rates which resulted in ultrafine particles few nms of average size. The optimum molar ratio of acid to alkoxide for alumina sol was 0.3-0.4 and that of water to alkoxide &as 1. On the other hand, the corresponding ratios for titania sol were found be 0.25-0.20 and 1 respectively. Dynamic light scattering measurements indicated that the average particle size in both sols was in the order of few nms. SEM photographs were taken to observe crack-free and smooth surfaces of coated membranes after sintering at $450^{\circ}C$. Alumina coated membrane on a slide glass had about 4-4.5$\mu \textrm{m}$, thickness and titania coated one had 2-2.5$\mu \textrm{m}$, thickness. And according to TEM photographs, the grain size of titania was smaller than 30nm and that of alumina was in the range of few $\AA$s to 2nms. An X-ray diffraction study revealed that alumina was $\gamma$ phase and titania was anatase crystal.

  • PDF