• Title/Summary/Keyword: Ultrafast optics

Search Result 17, Processing Time 0.036 seconds

Ultrafast Femtosecond Lasers: Fundamentals and Applications (펨토초 레이저의 원리 및 응용)

  • Kim, Young-Jin;Kim, Yun-Seok;Kim, Seung-Man;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.7-16
    • /
    • 2010
  • Physical fundamentals of ultrashort femtosecond lasers are addressed along with emerging applications for precision manufacturing and metrology. Femtosecond lasers emit short pulses whose temporal width is in the range of less than a picosecond to a few femtoseconds, thereby enabling extremely high peak-power machining with less thermal damages. Besides, the broad spectral bandwidth of femtosecond lasers constructed in the form of frequency comb permits absolute distance measurements leading to ultraprecision positioning control and dimensional metrology.

Spectroscopic Applications of Ultrashort Pulse Lasers (극초단 펄스레이저의 분광학 응용)

  • 김동호
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.87-97
    • /
    • 1990
  • With the recent advent of various ultrashort pulse lasers, time-resolved laser spectroscopic techniques have been widely recognized as versatile tools to study ultrafast phenomena in many research areas. These techniques are currently being employed not only to study atomic and molecular physics but to characterize the excited state or the carrier dynamics on surfaces of semiconductors, metals and thin layer materials. Also the sweetching speed measurement of ultrafast electro-optic devices using ultrashort laser pulses becomes important in high-speed electronics. Here, some principles of spectroscopic techniques with ps or fs lasers and their applications are summarized briefly.

  • PDF

Ultrafast carrier dynamics study of LT-GaAs semiconductors by using time-resolved photoreflectance spectroscopy (시간분해 광반사 분광기술을 이용한 LT-GaAs 반도체 운반자의 초고속 거동 연구)

  • 서정철;이주인;임재영
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.482-486
    • /
    • 1999
  • Ultrafast carrier dynamics of LT-GaAs semiconductors was investigated by using time-resolved photoreflectance spectroscopy. We can see that decay dynamics of photoreflectance generated by carriers depends strongly on the excitation wavelength due to the structure distortion of LT-GaAs semiconductors. Ultrafast trapping of excited carriers into deep trap states gives rise to transient photoreflectance decays with a lifetime shorter than 1 ps. Also, the long-lived photoreflectance is attributed to the carriers trapped deeply at point defects. fects.

  • PDF

Plasmon Assisted Deep-ultraviolet Pulse Generation from Amorphous Silicon Dioxide in Nano-aperture

  • Lee, Hyunsu;Ahn, Heesang;Kim, Kyujung;Kim, Seungchul
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.361-367
    • /
    • 2018
  • Ultrafast deep-ultraviolet (DUV) pulse generation from the subwavelength aperture of a plasmonic waveguide was investigated. The plasmonic nanofocusing of near-infrared (NIR) pulses was exploited to enhance DUV photoemission of surface third harmonic generation (STHG) at the amorphous $SiO_2$ dielectric. The generated DUV pulses which are successfully made from a nano-aperture using 10 fs NIR pulses have a spectral bandwidth of 13 nm at a carrier wavelength of 266 nm. This method is applicable for tip-based ultrafast UV laser spectroscopy of nanostructures or biomolecules

Gold-sapphire Plasmonic Nanostructures for Coherent Extreme-ultraviolet Pulse Generation

  • Han, Seunghwoi
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.576-582
    • /
    • 2022
  • Plasmonic high-order harmonic generation (HHG) is used in nanoscale optical applications because it can help in realizing a compact coherent ultrashort pulse generator on the nanoscale, using plasmonic field enhancement. The plasmonic amplification of nanostructures induces nonlinear optical phenomena such as second-order harmonic generation, third-order harmonic generation, frequency mixing, and HHG. This amplification also causes damage to the structure itself. In this study, the plasmonic amplification according to the design of a metal-coated sapphire conical structure is theoretically calculated, and we analyze the effects of this optical amplification on HHG and damage to the sample.

Characterization of Supercontinuum Generation as a function of Pump Wavelength and Intensity in Photonic Crystal Fiber (광자 결정 광섬유에서 펌프광원의 파장과 입력파워에 따른 초 광대역 광원 발생의 특성)

  • Kim, Jong-Doo;Yee, Ki-Ju;Jeon, Min-Yong;Ahn, Seong-Joon;Choi, Yong-Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.490-493
    • /
    • 2005
  • We have experimentally studied supercontinuum generation in a photonic crystal fiber as a function of pump wavelength and intensity with 100 fs pulsewidth. A supercontinuum over 750 nm spectral width with amplitude variation less than 10 dB has been achieved. It was generated by coupling femtosecond pulses from a mode-locked Ti:Sapphire laser into a 2 m long photonic crystal fiber. Adjusting the parameters of the pump source, it was also possible to control different spectral features of the supercontinuum radiation.

Towards the Reconstruction of Time-dependent Vibronic States from Nonlinear Wavepacket Interferometry Signals

  • Humble, Travis S.;Cina, Jeffrey A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1111-1118
    • /
    • 2003
  • We present one-color nonlinear wavepacket interferometry (WPI) signal calculations for a system of two electronic levels and one vibrational degree of freedom. We consider two cases, a displaced harmonic oscillator system, which can be treated analytically, and a model photodissociative system, whose WPI signal must be calculated by numerical wavepacket propagation. We show how signals obtained with different combinations of intrapulse-pair phase shifts can be combined to isolate the complex-valued overlap between a given onepulse target wavepacket and a variable three-pulse reference wavepacket. We demonstrate that with a range of inter- and intrapulse-pair delays the complex overlaps and variable reference states can be used to reconstruct the target wavepacket. We compare our results with previous methods for vibronic state reconstruction based on linear WPI and discuss further generalizations of our method.

Real-Time Determination of Relative Position Between Satellites Using Laser Ranging

  • Jung, Shinwon;Park, Sang-Young;Park, Han-Earl;Park, Chan-Deok;Kim, Seung-Woo;Jang, Yoon-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.351-362
    • /
    • 2012
  • We made a study on real-time determination method for relative position using the laser-measured distance data between satellites. We numerically performed the determination of relative position in accordance with extended Kalman filter algorithm using the vectors obtained through nonlinear equation of relative motion, laser simulator for distance measurement, and attitude determination of chief satellite. Because the spherical parameters of relative distance and direction are used, there occur some changes in precision depending on changes in relative distance when determining the relative position. As a result of simulation, it was possible to determine the relative position with several millimeter-level errors at a distance of 10 km, and sub-millimeter level errors at a distance of 1 km. In addition, we performed the determination of relative position assuming the case that global positioning system data was not received for long hours to see the impact of determination of chief satellite orbit on the determination of relative position. The determination of precise relative position at a long distance carried out in this study can be used for scientific mission using the satellite formation flying.

Terahertz Generation by a Resonant Photoconductive Antenna

  • Lee, Kanghee;Lee, Seong Cheol;Kim, Won Tae;Park, Jagang;Min, Bumki;Rotermund, Fabian
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.373-379
    • /
    • 2020
  • In this study, we investigate terahertz (THz) generation by a photoconductive antenna with electrodes in the shape of split-ring resonators. According to our theoretical investigation based on a lumped-circuit model, the inductance of this electrode structure leads to resonant behavior of the photo-induced current. Hence, near the resonance frequency the spectral components generated by a resonant photoconductive antenna can be greater than those produced by a non-resonant one. For experimental verification, a resonant photoconductive antenna, which possesses a resonance mode at 0.6 THz, and a non-resonant photoconductive antenna with stripe-shaped electrodes were fabricated on a semi-insulating GaAs substrate. The THz generation by both of the photoconductive antennas demonstrated a good agreement with the theoretically expected results. The observed relationship between the resonant electrodes of the photoconductive antenna and the generated THz spectrum can be further employed to design a narrow-band THz source with an on-demand frequency.