• Title/Summary/Keyword: Ultra-wideband systems

Search Result 170, Processing Time 0.025 seconds

Frequency Offset Estimation Technique for MB-OFDM Based UWB Systems (다중대역 직교 주파수 분할 다중 (MB-OFDM) 기반 초광대역(UWB) 시스템을 위한 주파수 오프셋 추정 기법)

  • Hwang, Hu-Mor;Rehman, Razi Ur
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.648-653
    • /
    • 2011
  • We propose a new frequency offset estimation technique for multiband orthogonal frequency modulation (MB-OFDM) based ultra wideband (UWB) systems. The proposed frequency offset estimation technique is related to the scheme of Schmidl for channel model 1 (4-1Om NLOS, rms. delay =14.3ns.) using more than two symbols and with alternate symbols. Variance of frequency offset estimate obtained from the proposed frequency offset estimation technique approaches very nearing to Cramer Rao Lower Bound (CRLB) in an AWGN channel. BER performance of the proposed technique is also presented.

Performance Analysis of TH-BPPM and TH-BPAM UWB System and the Applications in Data and Image Transmission

  • Sung, Tae-Kyung
    • Journal of Navigation and Port Research
    • /
    • v.31 no.2
    • /
    • pp.159-163
    • /
    • 2007
  • In this paper, we mainly analyze the performance of two ultra wideband communication systems, the classical Time Hopping Binary Pulse Position Modulation (TH-BPPM) UWB system and the Time Hopping Bipolar Pulse Amplitude Modulation (TH-BPAM) UWB system. The performance of TH-BPPM and TH-BPAM is analyzed in detail under an ideal AWGN channel and a correlation receiver. We use the power spectral density function to get the expression of BER of these two UWB systems. It yields simple and exact formulas relating the performance to the system parameters. The analysis shows that TH-BPPM suffers performance degradation with respect to TH-BPAM. Furthermore, we give the computer simulation of both data and image transmission and our simulation results also prove our theoretical analysis.

Characterization of Body Shadowing Effects on Ultra-Wideband Propagation Channel

  • Pradubphon, Apichit;Promwong, Sathaporn;Chamchoy, Monchai;Supanakoon, Pichaya;Takada, Jun-Ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.219-222
    • /
    • 2004
  • There are several factors that disturb an Ultra-Wideband (UWB) radio propagation in an indoor environment such as path loss, shadowing and multipath fading. These factors directly affect the quality of the received signal. In this paper, we investigated the influence of the human body shadowing on UWB propagation based on measured wireless channel in an anechoic chamber. The characteristics of the UWB channel including the transmitter and the receiver antenna effects are acquired over the frequency bandwidth of 3${\sim}$11 GHz. The major factors such as the power delay profile (PDP), the angular power distribution (APD), the pulse distortion and the RMS delay spread caused by the human body shadowing are presented.

  • PDF

Digital Fine Timing Tracker for Correlation Detection Receiver in IR-UWB Communication System (IR-UWB 시스템에서 상관 검출 수신기를 위한 디지털 미세 타이밍 추적기)

  • Ko Seok-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.905-913
    • /
    • 2006
  • In the impulse radio ultra-wideband communication systems, the residual timing offset exists when the acquisition and tracking of the timing synchronization is well done. And the offset affects the performance of the system dramatically. In order to compensate the offset, we present the digital phase-locked loop that uses the reference signal in the correlation detection receiver. First, we show the degradation of BER performance that is caused by the offset, and then compensation process of the timing tracker and performance improvement. In this paper, the timing detector in the tracker operates at the sampling period of frame level uses the correlation between received and reference signal. Also, we present the performance comparison by using the computer simulation results for different Gaussian monocycle pulses.

Distance Estimation Using Convolutional Neural Network in UWB Systems (UWB 시스템에서 합성곱 신경망을 이용한 거리 추정)

  • Nam, Gyeong-Mo;Jung, Tae-Yun;Jung, Sunghun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1290-1297
    • /
    • 2019
  • The paper proposes a distance estimation technique for ultra-wideband (UWB) systems using convolutional neural network (CNN). To estimate the distance from the transmitter and the receiver in the proposed method, 1 dimensional vector consisted of the magnitudes of the received samples is reshaped into a 2 dimensional matrix, and by using this matrix, the distance is estimated through the CNN regressor. The received signal for CNN training is generated by the UWB channel model in the IEEE 802.15.4a, and the CNN model is trained. Next, the received signal for CNN test is generated by filed experiments in indoor environments, and the distance estimation performance is verified. The proposed technique is also compared with the existing threshold based method. According to the results, the proposed CNN based technique is superior to the conventional method and specifically, the proposed method shows 0.6 m root mean square error (RMSE) at distance 10 m while the conventional technique shows much worse 1.6 m RMSE.

On the Interference of Ultra Wide Band Systems on Point to Point Links and Fixed Wireless Access Systems

  • Giuliano, Romeo;Guidoni, Gianluca;Mazzenga, Franco
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • Ultra Wide Bandwidth (UWB) spread-spectrum techniques will playa key role in short range wireless connectivity supporting high bit rates availability and low power consumption. UWB can be used in the design of wireless local and personal area networks providing advanced integrated multimedia services to nomadic users within hot-spot areas. Thus the assessment of the possible interference caused by UWB devices on already existing narrowband and wideband systems is fundamental to ensure nonconflicting coexistence and, therefore, to guarantee acceptance of UWB technology worldwide. In this paper, we study the coexistence issues between an indoor UWB-based system (hot-spot) and outdoor point to point (PP) links and Fixed Wireless Access (FWA) systems operating in the 3.5 - 5.0 GHz frequency range. We consider a realistic UWB master/slave system architecture and we show through computer simulation, that in all practical cases UWB system can coexist with PP and FWA without causing any dangerous interference.

Performance Evaluation of Antipodal Vivaldi Antenna in the Time- and Frequency-Domains for IR-UWB Systems Application (IR-UWB 시스템 응용을 위한 시간- 및 주파수-영역에서의 앤티포달 비발디 안테나 성능 평가)

  • Koh, Young-Mok;Kim, Keun-Yong;Ra, Keuk-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.159-168
    • /
    • 2012
  • In this paper, we designed the antipodal vivaldi antenna for IR-UWB systems application and evaluated IR-UWB antenna performance for the ultra wideband impulse signal transmission in the time- and frequency-domain. The designed antipodal vivaldi antenna was fabricated using FR-4 substrate which thickness 1.6 mm, dielectric constant ${\epsilon}_r=4.7$ and $tan{\delta}=0.002$. We measured the return loss, far filed radiation pattern at the anechoic chamber in the frequency-domain. We also performed the pulse fidelity analysis in the time-domain using nano-second impulse signal transmission and demonstrated the feasibility of ultra wideband signal stable transmission in the UWB band. The designed and fabricated antipodal vivaldi antenna could be emitting and receiving the IR-UWB signal while preserving low pulse distortion and good radiation pattern in time- and frequency-domain.

Recurrent Neural Network Based Distance Estimation for Indoor Localization in UWB Systems (UWB 시스템에서 실내 측위를 위한 순환 신경망 기반 거리 추정)

  • Jung, Tae-Yun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.494-500
    • /
    • 2020
  • This paper proposes a new distance estimation technique for indoor localization in ultra wideband (UWB) systems. The proposed technique is based on recurrent neural network (RNN), one of the deep learning methods. The RNN is known to be useful to deal with time series data, and since UWB signals can be seen as a time series data, RNN is employed in this paper. Specifically, the transmitted UWB signal passes through IEEE802.15.4a indoor channel model, and from the received signal, the RNN regressor is trained to estimate the distance from the transmitter to the receiver. To verify the performance of the trained RNN regressor, new received UWB signals are used and the conventional threshold based technique is also compared. For the performance measure, root mean square error (RMSE) is assessed. According to the computer simulation results, the proposed distance estimator is always much better than the conventional technique in all signal-to-noise ratios and distances between the transmitter and the receiver.

Design of a Ku-Band Quasi-Yagi Antenna Array Using an Ultra-Wideband Balun (초광대역 발룬을 이용한 Ku 대역 Quasi-Yagi 배열 안테나 설계)

  • Woo, Dong-Sik;Kim, Young-Gon;Cho, Young-Ki;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.207-213
    • /
    • 2008
  • A simplified design procedure for quasi-Yagi antenna arrays using an ultra-wideband balun is presented. The proposed antenna design procedure is based on the simple impedance matching among antenna components: i.e., balun, feed, and antenna This new broadband and high gain antenna array is possible due to the ultra-wideband performance of the balun. As design examples, wideband $1\times4$ and $1\times8$ quasi-Yagi antenna arrays are successfully designed and implemented in Ku-band with frequency bandwidths of about 50 % and antenna gains of 9$\sim$10 dBi and 11$\sim$12 dBi, respectively. And the simulated and measured results demonstrate wide bandwidths and good radiation properties. These antenna arrays can be applied to various phased-array and spatial power combining systems.