• Title/Summary/Keyword: Ultra-rapid orbits

Search Result 5, Processing Time 0.02 seconds

Rapid and Accurate GPS Data Processing with Ultra-rapid Orbits (초신속궤도력을 이용한 신속한 고정밀 GPS 데이터 처리)

  • 박관동;조정호;하지현;임형철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.309-316
    • /
    • 2003
  • Rapid and accurate data processing is required in many GPS(Global Positioning System) applications including surveying. While one can use four different kinds of GPS satellite orbits, we evaluated the accuracy and precision of each kind of orbits to find the best candidate for rapid and accurate data processing. The four different kinds of orbits we: broadcast orbits from GPS satellites; and ultra-rapid orbits, rapid orbits, and precise orbits provided by international GPS data analysis centers such as IGS. With GIPSY and ultra-rapid orbits, we could get the positioning accuracy of 1.5cm from seven days of GPS data. From this study, we conclude that rapid and accurate data processing is achieved with GIPSY and ultra-rapid orbits.

GPS Satellite Repeat Time Determination and Orbit Prediction Based on Ultra-rapid Orbits (초신속궤도력 기반 GPS 위성 repeat time 산출 및 궤도 예측)

  • Lee, Chang-Moon;Park, Kwan-Dong;Kim, Hye-In;Park, Jae-Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 2009
  • To plan a GPS survey, they have to decide if a survey can be conducted at a specific point and time based on the predicted GPS ephemeris. In this study, to predict ephemeris, we used the repeat time of a GPS satellite. The GPS satellite repeat time was determined by analysing correlation among three-dimensional satellite coordinates provided by the 48-hour GPS ephemeris in the ultra-rapid orbits. By using the calculated repeat time and Lagrange interpolation polynomials, we predicted GPS orbits f3r seven days. As a result, the RMS of the maximum errors in the X, Y, and Z coordinates were 39.8 km 39.7 km and 19.6 km, respectively. And the maximum and average three-dimensional positional errors were 119.5 km and 48.9 km, respectively. When the maximum 3-D positioning error of 119.5 km was translated into the view angle error, the azimuth and elevation angle errors were 9.7'and 14.9', respectively.

Anomaly Detection of IGS Predicted Orbits for Near-Real-Time Positioning Using GPS (GPS기반 준실시간 위치추적을 위한 IGS 예측궤도력 이상 검출)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.953-961
    • /
    • 2011
  • IGS (International GNSS Service) predicted orbits contained in IGS ultra-rapid orbits is suitable for real-time or near-real-time precise positioning. In this paper, we analyzed orbit anomalies of the IGS predicted orbits and detected the anomalies NANU (Current Notice Advisories to NAVSTAR Users) messages and IGS BRDC (Broadcast Ephemerides). As a results, the orbit anomalies of the predicted orbits were observed 93 times in 2010. In case of using the NANUs, we could get detection performance of 88% about the IGS predicted orbits's anomalies. And we could achieve 95% detection performance when the NANUs and BRDCs were used together.

DETERMINATION OF CLOCK OFFSET USING GPS CARRIER PHASE MEASUREMENTS (GPS 반송파위상 데이터를 이용한 시계오차 추출)

  • Ha, Ji-Hyun;Park, Kwan-Dong;Lee, Chang-Bok
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.491-500
    • /
    • 2005
  • Every time laboratory in the world follows an international standard time scale and GPS (Global Positioning System) is playing an important role. Korea Research Institute of Standards and Science is also operating a permanent GPS station for time transfer. To improve the accuracy and precision of the clock offsets derived from GPS we used carrier phase measurements. In addition, we tested four different kinds of GPS satellite orbits and compared the results. The precision of the time offsets using rapid and ultra-rapid orbits was about 0.5 nanoseconds (ns). Tn the case of broadcast orbits, the precision was better than 2 ns.

준실시간 고정밀 GPS 자료처리 자동화 시스템 구축

  • 하지현;박관동;박필호;임형철
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.33-38
    • /
    • 2003
  • We automated high-accuracy data processing routines for various near-real-time GPS applications. The automated system was based on UNIX, and it uses GIPSY-OASIS II and ultra-rapid orbits which is updated twice a day and provided online. The highest error in the estimated site position was 2 cm and 5 cm in the horizontal and vertical directions, respectively. The mean 3-D position error about 2 cm.

  • PDF