• Title/Summary/Keyword: Ultra-precision grinding

Search Result 110, Processing Time 0.026 seconds

The Dynamic and Machining Characteristics of Co-axial Grinding Machining System (동축 가공 연삭시스템의 운동 및 가공 특성)

  • Kim G.H.;Lee S.W.;Choi H.Z.;Choi Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.608-611
    • /
    • 2005
  • As the optical communication industry is developed, the demand of optical communication part is increasing. $ZrO_2$ ceramic ferrule is very important part which can determines the transmission efficiency and information quality to connect the optical fibers. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that the error of feeding system is improved. Therefore, we estimated the dynamic characteristics in feeding system of ultra precision co-axial grinding machining system. Then, we performed the machining characteristics experiment.

  • PDF

A Study on the Ultra-precision Mirror Finishing Using the System of Experiments (실험 계획법을 이용한 초정밀 연마 가공에 관한 연구)

  • Kim, Hong-Bae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.134-139
    • /
    • 1998
  • There have been so manu study in the ultra-precision mirror finishing. Already Using system of experiments extract factors effecting surface roughness and find optimal machining conditions in 40${\mu}{\textrm}{m}$, 30${\mu}{\textrm}{m}$, 15${\mu}{\textrm}{m}$ abrasive film. So in this study, Using Abrasive film of 12~3${\mu}{\textrm}{m}$ extract factors effecting surface roughness and results are follows; Factor A(film feed) in 12${\mu}{\textrm}{m}$ and 5${\mu}{\textrm}{m}$ abrasive film, Factor A(film feed) and B(applied force) in 9${\mu}{\textrm}{m}$ abrasive film, Factor C(grinding speed) in 3${\mu}{\textrm}{m}$ abrasive film are main factor effecting surface roughness.

  • PDF

A Study on the Characteristics of the Mirror Surface Abrasive Finishing using Micro Abrasive Film (마이크로 필름을 이용한 경면연마가공 특성에 관한 연구)

  • 김홍배;배명일;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.970-976
    • /
    • 1997
  • The ultra-precision machining is widely used for final machining process of precision parts, so in this study, mirror surface finishing systems using the micro abrasive film, one of ultra-precision machining method, have to examine mirror surface characteristics of the cylindrical workpiece(SM45) such as surface roughness, workpiece removal and evaluated under the condition varing film feed rate, applied pressure, grinding speed after fixing other condition. It was found that varrious machining condition have significant influences on workpiece removal, surface roughness.

  • PDF

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

Grinding Characteristics of Vitrified-bond CBN Wheel (비트리파이드 본드 CBN 휠의 연삭특성)

  • 원종호;김건희;박상진;안병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.787-792
    • /
    • 2000
  • Ultra-abrasives such as diamond and CBN have used to maintain accuracy and form deviation for superalloy etc. This study contains the dry cylindrical grinding of metals with Vitrified-bond CBN wheel. For various conditions of grinding speed, workpiece speed, grinding depth and feed speed of table, the grinding resistance, the surface roughness, and the material removal are measured and discussed. The results are as follows.

  • PDF

Reliability prediction of Centerless grinding machine (무심연삭 시스템의 신뢰성 예측)

  • Choi, H.Z.;Lee, S.W.;Kim, G.H.;ChoI, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1105-1108
    • /
    • 2004
  • As recently optical communication industry is developed, request of optical communication part is increased. Ferrule is very important part which determines transmission efficiency and quality of information in the optical communication part. Most of ferrule processes are grinding which request high processing precision. The ultra precision centerless grinding machine for ferrule grinding was designed. The centerless grinding machine is composed of the high damping bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. Reliability prediction was very important for the high quality design. In this study, centerless grinding machine was predicted reliability.

  • PDF

Novel grinding control method for nanometric surface roughness for space optical surfaces

  • Han, Jeong-Yeol;Kim, Sug-Whan;Kim, Geon-Hee;Kim, Ju-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.33-33
    • /
    • 2004
  • Traditional bound abrasive grinding leaves the machine marks and subsurface damages ranging from 1 to few tens microns ms in height. These are removed typically by subsequent craftmen-based loose abrasive lapping, polishing and figuring. Using the multi-variable regression technique, we established a new automated grinding process control method for the removal of loose abrasive lapping from the traditional fabrication process. (omitted)

  • PDF

Development of diamond wheel for ultra precision and high performance grinding of difficult-to-materials (난삭재의 초정밀.고능률 연삭가공을 위한 다이아몬드숫돌의 개발)

  • Heo, Seong-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2172-2178
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted. Wheels, that are employed for ultra precision and high performance grinding of difficult-to materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond grains were bonded firmly by a melamine resin to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work surfaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are suggested, and the grinding characteristics of wheels are also illustrated.

Extraction of Factors Effecting Surface Roughness Using the System of Experiments in the Ultra-precision Mirror Surface Finishing (실험 계획법을 이용한 초정밀 경면 연마 가공에서 표면 거칠기에 영향을 미치는 인자의 검출)

  • 배명일;김홍배;김기수;남궁석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 1998
  • In this study, it is experimented to find factors effecting surface roughness using the system of experiments. in the mirror surface finishing system. (1) The film feed and oscillation frequency in $40{\mu}m$ abrasive film, grinding speed in $30{\mu}m$, and machining time in $15{\mu}m$15 are the main factors effecting the surface roughness. (2) Applying the optimal finishing condition to $40{\mu}m$, $30{\mu}m$, $15{\mu}m$ abrasive finishing film in sequence, it is possible to obtian about Ra 10 nm surface roughness on SM45C workpiece. (3) Application of the system of experments to the micro abrasive grain film finishing was very effective method in the extraction of main factor and optimal condition.

  • PDF

A Study on the Mirror Grinding for Mold of a Small Aspherical Lens

  • Lee, Joo-Sang;Masaru Saeki;Tsunemoto Kuriyagawa;Katsuo Syoji
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.48-54
    • /
    • 2003
  • This paper deals with mirror grinding of a small-sized aspherical lens by a resin bonded diamond spherical wheel. Up to now, a spherical lens has been used for the lens of the optical communication optical part. However, recently, aspherical optical parts are mainly used in order to attempt the improvement in image quality and miniaturization of the optical device. It is possible to manufacture the aspherical lens which is presently being used in optical instrument through ultra-precision machining technology. Also, to realize compactness, efforts are being made to produce a micro aspherical lens, fur which the development of a high-precision, micro molding die is inevitable. Therefore, extensive research is being done on methods of producing a micro aspherical surface by high-precision grinding. In this paper, the spherical wheel was trued by cup-shaped truer and tool path was calculated by the radius of curvature of the wheel after truing and dressing. Then in the aspherical grinding experiment, WC material which is used as a melding die for the small-sized aspherical lens was ground. The results showed that a form accuracy of 0.1918 $\mu\textrm{m}$ P-V and a surface roughness of 0.064 $\mu\textrm{m}$ Rmax could be achieved.