• 제목/요약/키워드: Ultra-precision Grinding

검색결과 110건 처리시간 0.032초

초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구 (Characteristics of aspheric lens processing using ultra-precision moulds processing system)

  • 백승엽;이하성;강동명
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF

CBN휠에 의한 5종 재료의 연삭 특성 비교 (The Grinding Characteristics of 5 kind metals for CBN Wheel)

  • 원종호;김건희;안병민;박순섭;이진오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.925-929
    • /
    • 2001
  • Ultra-abrasives such as diamond and CBN have used to maintain accuracy and form deviation for superalloy etc. This study contains the dry cylindrical grinding of metals with Vitrified-bond CBN wheel and Resinoid-bond CBN wheel. For various conditions of grinding speed, workpiece speed, grinding depth and feed speed of table, the grinding resistance, the surface roughness, and the material removal are measured and discussed.

  • PDF

경화 열처리강의 정밀연삭가공 (Precision Grinding Characteristics of Hardened Steel)

  • 최원식;배대원
    • 열처리공학회지
    • /
    • 제18권6호
    • /
    • pp.355-361
    • /
    • 2005
  • In this study, the effects of the maximum undeformed chip thickness on grinding characteristics of hardened steel in down-grinding have been investigated. The meaured grinding forces become larger as the workpiece velocity increases. The specific energy, e decreases as the maximum undeformed chip thickness increase. When the maximum undeformed chip thickness is the same, the specific energy, e decreases as the grain size increases.

평행연삭과 자기연마에 의한 유리렌즈 성형용 코어 금형의 표면가공 특성 (Investigation for Mirror-surface Machining Properties of Mold Core of Glass Molding Press by Parallel Grinding and Magnetic Assistance Polishing)

  • 이용철;김경년;곽태수
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.22-27
    • /
    • 2010
  • The usage of ultra-precision machining is increasing by the manufacturing of precision optical elements such as camera lens, laser printer, CD player, DVD and microscope parts etc.. The WC alloy material is in wide use by mold core to improve the productivity and accuracy in manufacturing those precision parts. The WC alloy mould core can be machined effectively by the parallel grinding process which is an excellent technique for manufacturing of surface profile hard to machining materials such as the hardened metal alloy, Ceramics, Glass and so on. Magnetic assisted polishing as a final polishing process has also been utilized to obtain ultra-precision mirror surface with the elimination of traces presented on ground surface. It is able to deduce the optimal ultra-precision machining conditions of the WC alloy material from the experiment and analyses results.

초미세 고기능 동축가공 연삭 시스템의 구조 최적화 및 특성 평가 (Structural Optimization and Performance Evaluation of Ultra Precision Co-axial Ferrule Grinding Machining System)

  • 안건준;이호준;김기주;김기환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.559-560
    • /
    • 2006
  • Fiber optic connector, ferrule, is a device to connect and align fiber optics cable on fiber-optic communication system. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that structure of co-axial ferrule grinding system is optimized. In this paper, Structural analysis was performed to analyze bed and frame structure of co-axial grinding machine. Deformation and modal analysis for natural frequency was performed using ANSYS design space program to analyze structural characteristics. New improved model of bed and frame structure was proposed based on initial basic model. Therefore, we estimated the structural characteristics precision co-axial grinding machining system.

  • PDF

고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구 (A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module)

  • 김현욱;김정호;;곽태수;정상화
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

생산성 향상을 위한 연삭공정의 감시.제어시스템 개발 (Development of Monitoring/Control System for High Productive Grinding System)

  • 정병철;안중환;이상우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.425-428
    • /
    • 1994
  • Non-uniform minute deformation of a cylinderical workpiece resulted from the heat treatment process prior to the grinding makes it diffeclt to control the approaching feedrate of a grinding wheelto a workpiece optimallywithout on-site detection of the grinding states in the plunge grinding. The 4-stage model of the plunge grinding process is proposed according to the state of contact between grinding wheel and workpiece ; precontact, partial contact, entire contact and spark-out. Despite of being scrious to the precision of workpiece finished, the duration of spark-out is determined empirically. The purpose of this research is to develop a monitoring/control system for saving non- production time and setting the optimal spark-out time based on sensor information in the plunge grinding using AE and ultra sonic sensor.

  • PDF

페룰 가공용 초정밀 센터리스 연삭기 개발 (The development of Centerless Grinder for Ferrule Grinding)

  • 조순주;;;윤종식;조창래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.6-9
    • /
    • 2005
  • In this study, the ultra precision centerless grinder for ferrule grinding was designed. As the good-qualified ferrule is required a precise and fine grinding, grinding machine for ferrule must have a high accuracy and a sufficient stiffness. The centerless grinder is composed of the high damping concrete bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. For a newly developed centerless grinder, hydrostatic system with high precision feeding and high stiffness was proposed. The grinding and regulating wheel spindle units were composed of hydrostatic spindle and feeding table was hydrostatic table. The prototype of hydrostatic table was manufactured and tested.

  • PDF

Minimization of Hydrodynamic Pressure Effect on the Ultraprecision Mirror Grinding

  • Lee, Sun-Kyu;Miyamoto, Yuji;Kuriyahawa, Tsunemoto;Syoji, Katsuo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.59-64
    • /
    • 2005
  • This paper describes an investigation about the fluid delivering method that minimizes the generation of hydrodynamic pressure and improves the grinding accuracy. Traditionally, grinding fluid is delivered for the purpose of cooling, chip flushing and lubrication. Hence, a number of conventional investigations are focused on the delivering method to maximize fluid flux into the contact arc between the grinding wheel and the work piece. It is already known that hydrodynamic pressure generates due to this fluid flux, and that it affects the overall grinding resistance and machining accuracy. Especially in the ultra-precision mirror grinding process that requires extremely small amount of cut per pass, its influence on the machining accuracy becomes more significant. Therefore, in this paper, a new delivering method of grinding fluid is proposed with focus on minimizing the hydrodynamic pressure effect. Experimental data indicates that the proposed method is effective not only to minimize the hydrodynamic pressure but also to improve the machining accuracy.