• Title/Summary/Keyword: Ultra-precision Diamond Machining

Search Result 114, Processing Time 0.025 seconds

A Study of Aluminum Reflector Manufacturing in Diamond Turning Machine (다이아몬드 터닝머신을 이용한 알루미늄반사경의 절삭특성)

  • 김건희;고준빈;김홍배;원종호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.1-5
    • /
    • 2002
  • A 110 m diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fsbricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an A1 substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632.8nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated A1 alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

Design and Testing of a Long Stroke Fast Tool Servo for Ultra-precision Free-form Machining (초정밀 자유곡면 가공용 long stroke fast tool servo의 설계 및 특성 평가)

  • Kim, Ho-Sang;Lee, Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.35-44
    • /
    • 2009
  • Long stroke Fast Tool Servo (LFTS) with maximum stroke of $432{\mu}m$ is designed, manufactured and tested for fabrication of optical free-form surfaces. The large amount of stroke in LFTS has been realized by utilizing the hinge and lever mechanisms which enable the displacement amplification ratio of 4.3. In this mechanism the peculiar shape was devised for maximizing the displacement of end tip in LFTS and special mechanical spring has been mounted to provide the sufficient preload to the piezoelectric actuator. Also, its longitudinal motion of tool tip can be measured by capacitive type displacement sensor and closed-loop controlled to overcome the nonlinear hysteresis. In order to verify the static and dynamic characteristics of designed LFTS, several features including step response, frequency response and cut-off frequency in closed-loop mode were experimentally examined. Also, basic machining result shows that the proposed LFTS is capable of generating the optical free-form surface as an additional axis in diamond turning machine.

The characteristics of Ultra Precision Machine of Optical crystals for Infrared Ray (적외선 광학소자의 초정밀 절삭특성에 관한 연구)

  • Kim G.H.;Yang Y.S.;Kim H.S;Sin H.S.;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.414-417
    • /
    • 2005
  • Single point diamond turning technique for optical crystals is studied in this paper. The main factors which are influential the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimal machining conditions for ductile cutting of optical crystals and to apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material(Ge). Many technical challenges are being tried for the large space infrared telescope, which is one of the major objectives of the National Strategic Technology Road Map (NSTRM).

  • PDF

The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays (적외선용 광학소자의 초정밀 절삭특성)

  • Won, Jong-Ho;Park, Won-Kyoo;Kim, Ju-Hwan;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

Ultra-precision Machining of Space Telescope IR Camera Lens (초정밀 가공기를 이용한 적외선 우주망원경용 렌즈의 절삭가공기술개발)

  • Yang, Sun-Choel;Kim, Geon-Hee;Kim, Hyo-Sik;Shin, Hyun-Su;Hong, Kweon-Hee;Yoo, Jong-Sin;Kim, Dong-Rak;Park, Soo-Jong;Nam, Uk-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.31-36
    • /
    • 2005
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are studied and regularities of machining process are drawn. Optical crystals have been known to more and more important applications in the field of modern optics. Ge is more brittle material of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of Ge and apply the SPDTM technique to the manufacturing of ultra precision optical components of Ge. As a result, the surface roughness is the best when cutting speed is 180m/min, feed rate is 2mm/min, depth of cut is $0.5{\mu}m$ and nose radius of tool is 0.8mm.

  • PDF

Nano-turning of single crystal silicon (단결정 실리콘의 초정밀가공)

  • 김건희;도철진;홍권희;유병주;원종호;박상진;안병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.939-942
    • /
    • 2000
  • Single point diamond turning technique for optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material.

  • PDF