• Title/Summary/Keyword: Ultra-precision Cutting

Search Result 129, Processing Time 0.039 seconds

The Minimizing of Cutting Depth using Vibration Cutting (진동절삭법을 이용한 절삭깊이의 최소화)

  • 손성민;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.38-45
    • /
    • 2004
  • This paper discusses the minimum cutting thickness with a continuous chip in sub-micrometer order precision diamond cutting. An ultra precision cutting model is proposed, in which the tool edge radius and the friction coefficient are the principal factors determining the minimum cutting thickness. The experimental results verify the proposed model and provide various supporting evidence. In order to reduce the minimum cutting thickness a vibration cutting method is applied, and the effects are investigated through a series of experiments under the same conditions as conventional cutting method.

Ultra-precision Grinding Machining of Glass Rod Lens Core With Aspheric (비구면 Glass Rod 렌즈 금형의 초정밀 연삭가공)

  • Kim, Woo-Soon;Kim, Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2009
  • To obtain the surface roughness with nano order, we need a ultra-precision machine, cutting condition, and materials. In this paper, the cutting condition for getting nano order smooth surface of core have been examined experimentally by the ultra-precision machine and diamond wheels. The effects of the cutting velocity, the feed rate and depth of cut on the surface roughness were studied. And also, the surface roughness was measured by the Form Talysurf series PGI 840. The champion data of developed core was surface roughness Rmax 24.6nm, figure accuracy Rmax 68.9nm.

A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror (적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구)

  • Kim Gun-Hee;Kim Hyo-Sik;Shin Hyun-Soo;Won Jong-Ho;Yang Sun-Choel
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.44-50
    • /
    • 2006
  • This paper describs about the technique of ultra-precision machining for an infrared(IR) camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM(Single Point Diamond Turning Machine). Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8\;nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector. The cutting force and the surface roughness are measured according to each cutting conditions feed rate, depth of cut and cutting speed, using diamond turning machine to perform cutting processing. As a result, the surface roughness is good when feed rate is 1mm/min, depth of cut $4{\mu}m$ and cutting speed is 220 m/min. We could machined the primary mirror for IR camera in diamond machine with a surface roughness within $0.483{\mu}m$ Rt on aspheric.

Real-time Motion Error Time and the Thermal Error Compensation of Ultra Precision Lathe (초정밀 가공기의 실시간 운동오차 및 열변형오차 보상)

  • Kwac Lee-Ku;Kim Hong-Gun;Kim Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.44-48
    • /
    • 2006
  • Recently, demand the ultra precision product which is increasing rapidly is used extensively frontier industry field such as semi-conductor, computer, aerospace, precision machine. Ultra precision processing is the portion that is very needed to NT in the field of mechanical engineering. The latest date, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts those are connected with these industrial fields. Specially, require motion accuracy of high resolution of nm order in stroke of hundreds millimeters according as diameter of processing object great and processing accuracy rises. In this case ,the response speed absolute delay because inertial mass of moving part is very large. Therefore, real time motion error compensation becomes very hardly. In this paper, we used ultra precision cutting unit(UPCU) to cope such problem. a UPCU is designed and tested to obtain sub-micrometer from accuracy in diamond turning of flat surfaces. The thermal growth spindle error is compensated for real time using a UPCU driven by piezoelectric actuator along with a laser encoder displacement sensor.

Characteristics of Surface Roughness in the High Speed Micro Turning of Aluminum Alloy (알루미늄 합금의 고속 미소 선삭에 있어서 표면거칠기 특성)

  • Seong, Chul-Hyun;Kim, Hyeung-Chul;Kim, Ki-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.94-100
    • /
    • 1999
  • This study adopted the ultra precision machining system which was composed of an air bearing spindle, a granite bed, air pad and a linear feeding mechanism. It also applied the cutting experiment on the aluminum alloy. To evaluate the safety of high speed machining, we examined the surface roughness according to the changes of cutting speed and obtained the speed limit. This paper also studied the effect of cutting condition such as feed rates and depths of cut on the surface roughness within the speed limit. This provided practical information regarding ultra precision machining.

  • PDF

A Study on Characteristics of the Precision Machined Surfaces by AFM Measurement (AFM 측정법에 의한 초정밀 가공면의 특성 평가 연구)

  • Kim, Jong-Kwan;Lee, Gab-Jo;Jung, Jong-Soo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.1
    • /
    • pp.80-85
    • /
    • 2007
  • High speed cutting is a machining process which cuts materials with the fast movement and rotation of a spindle in a machine tool. High speed cutting leaves a plastically deformed layer on the machined surface. This deformed layer affects in various forms to the surface roughness of machined parts such as the dimensional instability, the micro crack. The surface roughness is called surface integrity which is very important in precision cutting. This paper aims to study on the machined surfaces characteristics of aluminum alloy and brass by AFM(Atomic force microscope) measurement. The objective is contribution to ultra- precision cutting by exhibit foundation data of surface roughness and tool wear when parts are cutting with diamond tool at the factory.

Machinability Evaluation of Endmill Tool through Development of Ultra-fine Grain Grade Cemented Tungsten Carbide Material (초미립 초경소재 개발을 통한 엔드밀 공구의 성능 평가)

  • 김홍규;서정태;권동현;김정석;강명창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.865-869
    • /
    • 1997
  • In recent years, there has been increasing demand of ultra-fine grain graded cemented tungsten carbide material with high hardness and toughness which is used as high speed cutting tool for development in semiconductor, electronics and die/mold industry, which bring into limelight high-precision, high-efficient machining of sculptured surfaces. This paper deals with the performance of variation in the ultra-fine grain graded cemented tungsten carbide material such as grain size, hardness and density varied according to the volume of added elements, Co or TaC, and he changing of mixing, sintering process. Also, the performance of developing material with uniformed grain size of 0.5${\mu}{\textrm}{m}$ is compared with other domestics' & foreign companies' with analyzing and cutting performance testing.

  • PDF

Stability Analysis and Ultra-Precision Positioning for UPCU (UPCU의 안정성 검토 및 초정밀 위치결정)

  • Kim Woo-Jin;Kim Jae-Yeol;Yoon Sung-Un;Jang Jong-Hoon;Kim You-Hong;Choi Choul-jun
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.48-53
    • /
    • 2005
  • The world, coming into the 21st century, is preparing a new revolution called a knowledge-based society after the industrial society. The interest of the world is concentrated on information technology, nano-technology and biotechnology. In particular, the nano-technology of which study was originally started from an alternative for overcoming semiconductor micro-technology. It can be applied to most industry subject such as electronics, information and communication, machinery, chemistry, bioengineering, energy, etc. They are emerging into the technology that can change civilization of human beings. Specially, ultra precision machining is quickly applied to nano-technology in the field of machinery. Lately, with rapid development of electronics industry and optic industry, there are needs for super precision finishing of various core parts required in such related apparatuses. This paper handles stability of a super precision micro cutting machine that is a core unit of such a super precision finisher, and analyzes the results depending on the hinge type and material change, using FEM analysis. By reviewing the stability, it is possible to achieve the effect of basic data collection for unit control and to reduce trials and errors in unit design and manufacturing.

  • PDF