• Title/Summary/Keyword: Ultra-low Carbon Interstitial free steel

Search Result 3, Processing Time 0.018 seconds

A Study on the Fiber Laser welding of Ultra-Low Carbon Interstitial Free Steel for Automotive (자동차용 무침입형 극저탄소강의 파이버 레이저 용접에 대한 연구)

  • Oh, Yong-Seok;Shin, Ho-Jun;Yang, Yun-Seok;Hwang, Chan-Youn;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • The purpose of this paper is to describe experimental results about the butt welding and bead on plate welding of the high power Continuous Wave (CW) Fiber laser for Ultra-low carbon Interstitial Free(IF) steel plate for gear part of car. After being welded of the gear parts by the fiber laser and electron beam Microstructures of melting zone had been mixed acicular, granular bainitic, quasi-polygonal and widmanstatten ferrite because of a radical thermal diffusion after welding, difference of critical volume and grain size. As a result of experiment, when gear parts were welded by the fiber laser and electron beam, the fiber laser welding has been stable properties without internal defects more than the electron beam welding. Therefore it has the very advantages of welding high quality and productivity more than conventional melting method. The optimal welding processing parameters for gear parts were as follows : the laser power and welding speed were 3kWatt, 30mm/sec respectively. At this time heat input was $21.2{\times}10^3J/cm^2$.

Effects of Alloy Additions and Annealing Parameters on Microstructure in Cold-Rolled Ultra Low Carbon Steels (극저탄소 냉연강판에서 합금원소 및 어닐링조건이 미세조직에 미치는 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2004
  • Effects of the annealing parameters on the formation of ferrites transformed at low temperatures were studied in cold-rolled ultra low carbon steels with niobium and/or chromium. Niobium and chromium were found to be effective in the formation of the low temperature transformation ferrites. The low temperature transformation ferrites more easily formed when both higher annealing temperature and longer annealing time, allowing substitutional alloying elements to distribute between phases, are in combination with faster cooling rate. It was found from EBSD study that the additions of niobium or chromium resulted in the increase in the numbers of high angle grain boundaries and the decrease in those of the low angle grain boundaries in the microstructures. Both granular bainitic ferrite and bainitic ferrite were characterized by the not clearly etched grain boundaries in light microscopy because of the low angle grain boundaries.

Characteristics of Precipitation Hardened Extra Low Carbon Steels (석출강화형 극저탄소강의 특성에 대한 고찰)

  • Yoon, Jeong-Bong;Kim, Sung-il;Kim, In-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.609-616
    • /
    • 2008
  • Conventional bake-hardenable(BH) steels should be annealed at higher temperatures because of the addition of Ti or/and Nb which forms carbides and raises recrystallization start temperature. In this study, the development of new BH steels without Ti or Nb addition has been reviewed. The new BH steels have nearly same mechanical properties as the conventional BH steels even though it is annealed at lower temperature. The steels also show smaller deviation of the mechanical properties than that of the conventional BH steels because of the conarol of solute carbon content during steel making processes. The deviation of mechanical properties in conventional BH steels is directly dependent on the deviation of solute carbon which is greatly influenced by the amount of the carbide formers in conventional BH steels. Less alloy addition in the newly developed BH steels gives economical benefits. By taking the advantage of sulfur and/or nitrogen which scarenge in Interstitial-Free or conventional BH steels, fine manganese sulfides or nano size copper sulfides were designed to precipitate, and result in refined ferrite grains. Aluminum nitrides used as a precipitation hardening element in the developed steels were also and resull in fine and well dispersed. As a result, the developed steels with less production cost and reduced deviation of mechanical properties are under commercial production. Note that the developed BH steels are registered as a brand name of MAFE(R) and/or MAF-E(R).