• Title/Summary/Keyword: Ultra-high

Search Result 3,386, Processing Time 0.032 seconds

Magnetic Tunnel Junctions with AlN and AlO Barriers

  • Yoon, Tae-Sick;Yoshimura, Satoru;Tsunoda, Masakiyo;Takahashi, Migaku;Park, Bum-Chan;Lee, Young-Woo;Li, Ying;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • We studied the magnetotransport properties of tunnel junctions with AlO and AlN barriers fabricated using microwave-excited plasma. The plasma nitridation process provided wider controllability than the plasma oxidization for the formation of MTJs with ultra-thin insulating layer, because of the slow nitriding rate of metal Al layers, comparing with the oxidizing rate of them. High tunnel magnetoresistance (TMR) ratios of 49 and 44% with respective resistance-area product $(R{\times}A) of 3 {\times} 10^4 and 6 {\times} 10^3 {\Omega}{\mu}m^2$ were obtained in the Co-Fe/Al-N/Co-Fe MTJs. We conclude that AlN is a hopeful barrier material to realize MTJs with high TMR ratio and low $R{\times}A$ for high performance MRAM cells. In addition, in order to clarify the annealing temperature dependence of TMR, the local transport properties were measured for Ta $50{\AA} /Cu 200 {\AA}/Ta 50 {\AA}/Ni_{76}Fe_{24} 20 {\AA}/Cu 50 {\AA}/Mn_{75}Ir_{25} 100 {\AA}/Co_{71}Fe_{29} 40 {\AA}/Al-O$ junction with $d_{Al}= 8 {\AA} and P_{O2}{\times}t_{0X}/ = 8.4 {\times} 10^4$ at various temperatures. The current histogram statistically calculated from the electrical current image was well in accord with the fitting result considering the Gaussian distribution and Fowler-Nordheim equation. After annealing at $340^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 44%, the average barrier height increased to 1.12 eV and its standard deviation decreased to 0.1 eV. The increase of TMR ratio after annealing could be well explained by the enhancement of the average barrier height and the reduction of its fluctuation.

Behavior and Capacity of Compression Lap Splice in Unconfined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 없는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.291-302
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. New criteria for the compression lap splice including the effects of concrete strength are required for practical purpose of ultra-high strength concrete. Characteristics of compression lap splice have been extensively investigated and main parameters are derived. In addition, an experimental study has been conducted with column specimens in concrete strength of 40 and 60 MPa. The strength of the compression lap splice consists of bond and end bearing and two contributors are combined. Therefore, combined action of bond and end bearing should be assessed. Compared with tension splices, concrete strength significantly affects the strength of compression splices due to short splice length and existence of end bearing. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. The stress states of concrete surrounding spliced bars govern the strengths of bond and end bearing. Because the axial stress of the concrete is relatively high, the splice strength is not dependent on clear spacing. End bearing strength is not affected by splice length and clear spacing and is expressed with a function of the square root of concrete strength. The failure mode of specimens is similar to side-face blowout of pullout test of anchors and the strength of end bearing can be evaluated using the equation of side-face blowout strength. Because the stresses developed by bond in compression splices are nearly identical to those in tension splices, strength increment of compression splices is attributed to end bearing only.

Low-temperature synthesis of nc-Si/a-SiNx: H quantum dot thin films using RF/UHF high density PECVD plasmas

  • Yin, Yongyi;Sahu, B.B.;Lee, J.S.;Kim, H.R.;Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.341-341
    • /
    • 2016
  • The discovery of light emission in nanostructured silicon has opened up new avenues of research in nano-silicon based devices. One such pathway is the application of silicon quantum dots in advanced photovoltaic and light emitting devices. Recently, there is increasing interest on the silicon quantum dots (c-Si QDs) films embedded in amorphous hydrogenated silicon-nitride dielectric matrix (a-SiNx: H), which are familiar as c-Si/a-SiNx:H QDs thin films. However, due to the limitation of the requirement of a very high deposition temperature along with post annealing and a low growth rate, extensive research are being undertaken to elevate these issues, for the point of view of applications, using plasma assisted deposition methods by using different plasma concepts. This work addresses about rapid growth and single step development of c-Si/a-SiNx:H QDs thin films deposited by RF (13.56 MHz) and ultra-high frequency (UHF ~ 320 MHz) low-pressure plasma processing of a mixture of silane (SiH4) and ammonia (NH3) gases diluted in hydrogen (H2) at a low growth temperature ($230^{\circ}C$). In the films the c-Si QDs of varying size, with an overall crystallinity of 60-80 %, are embedded in an a-SiNx: H matrix. The important result includes the formation of the tunable QD size of ~ 5-20 nm, having a thermodynamically favorable <220> crystallographic orientation, along with distinct signatures of the growth of ${\alpha}$-Si3N4 and ${\beta}$-Si3N4 components. Also, the roles of different plasma characteristics on the film properties are investigated using various plasma diagnostics and film analysis tools.

  • PDF

Effect of Various Sterilization Methods on Growth of Microorganism Contaminated in Ginseng Powder (여러 가지 살균방법이 인삼분말에 오염된 미생물의 성장에 미치는 영향)

  • 곽이성;장진규
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.3
    • /
    • pp.221-226
    • /
    • 2001
  • Various sterilization methods were applied to the powder of ginseng for the improving hygienic quality. Ultra-violet (UV) and Infrared ray (IR) treatments could not inhibit highly growth of bacteria in ginseng powder. However, high hydrostatic pressure treatment showed high inhibition rate against bacterial growth in ginseng powder. Changes of viable cell count by the pressure showed positive relationship between growth inhibition rates and the pressures applied. When powder was treated with 2,000 kg/$\textrm{cm}^2$ for 10 min at $25^{\circ}C$, initial viable cell count of the powder, 2.0$\times$10$^4$CFU/g, was decreased to 1.0$\times$10$^4$CFU/g. When it treated with 3,000, 4,000 and 5,000 kg/$\textrm{cm}^2$ of pressures under the same condition, viable cell counts were 8.0$\times$10$^3$, 7.0$\times$10$^3$and 1.8$\times$ 10$^3$CFU/g, respectively. Ginseng saponins of the powders were all detected when analyzed by TLC chromatography after treatment with the Pressures. Therefore, it was considered that saponin of ginseng powder was stable under the condition of 5,000 kg/$\textrm{cm}^2$ of pressure, even though the treatment induced coagulation of the powder.

  • PDF

Removal of Impurities from Waste Carbon Sludge for the Recycling (폐 카본슬러지의 재활용을 위한 不純物 분리 제거)

  • 이성오;국남표;오치정;김선태;신방섭
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.51-59
    • /
    • 2001
  • Impurities removal from waste carbon black was carried out to produce high-grade carbon black. A large amount of hydrophilic carbon black is produced as a byproduct of the hydrogen production process by flame decomposition of water. Due to its impurities content such as sulphur, iron, ash, etc., it can only be used as low-grade carbon or burnt out. High-grade hydrophilic carbon black is 3~5 times more expensive than oil-based carbon black because of high production cost associated with process complexly and pollutant treatment. Hydrophilic carbon is normally used for conductive materials for batteries, pigment for plastics, electric wire covering, additives for rubber, etc. In these applications, impurity content must be blow 1 fe. In this study, magnetic separation, froth flotation and ultrasonic treatment were employed to remove impurities from the low-grade hydrophilic carbon black. Results showed that the ash, iron and sulphur content of product decreased to less than 0.01 wt.%, 0.01 wt.% and 0.3 wt % respectively and the surface area of product was about 930 $m^2$/g for conductive materials.

  • PDF

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

Root cause analysis of the abnormal wear on diesel engine crankpin and lubricant contamination (윤활유 오염과 디젤엔진의 크랭크핀 이상마모에 대한 원인 규명)

  • Seo, Jeongwoo;Park, Donghee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.854-867
    • /
    • 2014
  • In the circumstance that high oil price state is continued over the world, the investment in crude oil development by oil major is a trend of increasing. Recently the number of delivered drill-ship for 5 years has been sharply increased all over the world and about twice than that of past 30 years. As addition to the increase of the drill-ship demand, the operation of drill-ships which is delivered recently is about 3,000 meters, ultra deep sea, on average and the work area is expending. Accordingly the drilling system including the size and length of pipe for drilling has been bigger and bigger and the power supply equipment for operation system also has large capacity. Unlike merchant vessel, high power and high voltage of diesel generators are required for drill-ship for which the demand for V-type 320 bore of diesel generator has increased. It is on the raised that the importance of lubrication oil cleaning for diesel generator on drill-ship which has longer time for construction, and also long term low load operation is unavoidable during commissioning of equipments. Recently it was reported that engine crankpin was damaged due to the hard contact caused by the abnormal wear down(Cam wear) on crankpin and bearing. The same pattern of wear down was found through the inspection on series vessels and the other vessel under commissioning. The purpose of this paper is to analyze of the wear mechanism based on the observation and theories and objective research from actual cases and to prepare the counter measures to avoid foreseeable damage when the lubricating oil is not properly cleaned.

A study on the HTS-NAA/γ-spectrometry for the analysis of alpha-particle emitting impurities in silica (고순도 실리카중 알파방출 불순물 분석을 위한 HTS-NAA/γ-spectrometry 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Yang, Myung Kwon;Shim, Sang Kwon;Kim, Yongje;Chung, Yong Sam
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2005
  • It has been established that soft error of high precision electronic circuits can be induced by alpha particles emitted from the naturally occurring radioactive impurities such as U, and Th. As the electronic circuits have recently become lower dimension and higher density, these alpha-particle emitting radioactive impurities have to be strictly controlled. The aim of this study is to develop of NAA (Neutron Activation Analysis) and gamma-spectrometry to improve the analytical sensitivity and precision of U and Th. A new NAA method has been established using the HTS (Hydrulic transfer system) irradiation facility which has been used to produce radioisotopes for industries and medicines instead of the PTS (pneumatic transfer system) irradiation facility which has been used in general NAA. When the ultratrace impurities have to be analyzed by NAA, background gamma-ray spectra induced from $^{222}Rn$ and its progenies in air is serious problem. This unstable background has been eliminated or stabilized by the use of a nitrogen purging system. Ultra trace amounts of U (0.1 ng/g) and Th (0.01 ng/g) in high purity silica used for EMC could be analyzed by the use of HTS-NAA and low background gamma-spectrometry.

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa (120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도)

  • Sim, Hye-Jung;Chun, Sung-Chul;Choi, Sokhwan
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.365-373
    • /
    • 2016
  • Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.

Static Behavior of Stud Shear Connector for UHPC Deck (초고성능 콘크리트 바닥판을 위한 스터드 전단연결재의 정적 거동)

  • Lee, Kyoung-Chan;Kwark, Jong-Won;Park, Sang-Hyeok;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • Typical composite girder has been composed with conventional concrete deck and steel girder. Recently, ultrahigh-performance-concrete (UHPC) deck is proposed in order to enhance durability and reduce weight of deck as well as to increase stiffness and strength of the composite girder. This study investigates that a headed stud is still compatible as a shear connector for the UHPC deck and steel girder composite beam. Twelve push-out specimens are prepared to evaluate the static strength of stud shear connectors embedded in the UHPC deck. The test program proves that the static strength of the stud shear connectors embedded in UHPC well meets with design codes described in AASHTO LRFD. Chosen experimental variables are aspect ratio of height to diameter of stud, thickness of deck and thickness of concrete cover over the head of stud. From the test program, aspect ratio and cover thickness are investigated to mitigate the regulations of the existing design codes. The minimum aspect ratio and the minimum cover thickness given in AASHTO LRFD are four and 50mm, respectively. This limitation hinders to lower the thickness of the UHPC deck. The results of the experiment program give that the aspect ratio and the cover thickness can be lower down to three and 25mm, respectively. Eurocode-4 regulates characteristic relative slip at least 6mm. However, test results show that stud shear connectors embedded in UHPC provide the characteristic relative slip only about 4mm. Therefore, another measures to increase ductility of stud should be prepared.