• Title/Summary/Keyword: Ultra-fine particle

Search Result 106, Processing Time 0.031 seconds

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Application of Oryza sativa (Rice) Bran Oil as an Anti-pollution Cosmetic Material (쌀겨오일의 안티폴루션 화장품 소재로써의 응용)

  • Kang, Hae-Ran;Jung, So Young;Heo, Hyojin;Cha, Byungsun;Brito, Sofia;Lee, So Min;Yeo, Hye Lim;Yoo, Kyung Wan;Kwak, Jun Soo;Kwak, Byeong-Mun;Lee, Mi-Gi;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.237-245
    • /
    • 2021
  • Particulate matter and ultra-particle matters generally refer to very small floating dust, such as 1/6 to 1/7 and 1/20 to 1/30, respectively, compared to the thickness of human hair, and contain various types of heavy metal ions. In addition to breathing, particle matters (PM) that flows in through the gaps in the pores of the skin can induce health problems in the body's tissues and skin, so it must be removed by blocking the inflow or by washing. Through this study, we confirmed the possibility that heavy metal ions can be adsorbed and removed by using Oryza sativa (Rice) bran oil (OSBO). In addition, the cell viability is much higher than that of grain-derived components through cytotoxicity experiments, and the cytoprotective effect of an external stimulus source can be expected. It was confirmed that the expression amount of COL1A1 mRNA increased, and accordingly, it was believed that wrinkles that might be caused by moisture lost by heavy metal ions in fine dust could be alleviated. Based on the results of these experiments, we tried to present a cosmetics containing OSBO, which is a wash-off formulation, in order to finally remove heavy metals.

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

A Study on Photoluminance Properties of $(Y,Gd)BO_3:Eu^{3+}$ Phosphor Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무법으로 제조한 $(Y,Gd)BO_3:Eu^{3+}$ 형광체의 발광특성에 관한 연구)

  • Kim, Dae-Su;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.204-211
    • /
    • 2000
  • The $(Y,Gd)BO_3:Eu$ red phosphors for PDP application were synthesized by ultrasonic spray method and then their photoluminance properties were investigated under 147nm VUV irradiation. The precursor solution of acetates of Y, GD and Eu and boric acid diluted in water was sprayed using 1.7 MHz ultra-sonic sprayer into the reaction tube held at high temperature. The as-sprayed particles were amorphous phase having C-C and C-H bonds due to the insufficient thermal reaction during the pass along the tube. But the sprayed samples followed by heat treatment at $1100^{\circ}C$ had the same crystal structure and chemical composition as those samples followed by solid state reaction. It was found that the $(Y_{0.7}Gd_{0.3})_{0.95} BO_3:Eu_{0.05}^{3+}$ phosphor particles synthesized by spray at $500^{\circ}C$ and then heat treated at $900^{\circ}C$ had a spherical-like shape and fine particle size at $0.7{\mu\textrm{m}}$ having a narrow size distribution, while the phosphor particles made by solid state reaction was $3{\mu\textrm{m}}$ coarse and non-uniform size distribution. The emitting intensity under 147nm VUV excitation for $(Y_{0.7}Gd_{0.3})_{0.95}BO_3:Eu_{0.05}^{3+}$ phosphor prepared by spray method was found to be higher than those phosphor made by solid state reaction and the commercial $(Y,Gd)BO_3:Eu$ product.

  • PDF

Development of Recycled Paper Properties using In-Situ Process (In-Situ 공정(工程)을 이용한 재활용(再活用) 펄프의 물성특성(物性特性) 향상 연구(硏究))

  • Lee, Jong-Kyu;Yoo, Kwang-Suk;Nam, Seong-Yong;Ah, Ji-Whan
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.62-70
    • /
    • 2010
  • As the demand for paper continues to grow and the importance of recycled paper, white ledgar(WL) and old newspaper pulp(ONP), continuously increase. In addition, usage of recycled paper is essential in terms of forest conservation and environmental protection issues. However, optical and mechanical properties of recycled paper have some drawbacks than regular paper's properties that is indispensable. In order to complement these problems of recycled paper, precipitated calcium carbonate (PCC) was synthesized by the In-situ process with a recycled pulp. Depending on the size of PCC is divided into 2 types, $0.01{\mu}m{\sim}0.09{\mu}m$ colloid type ultra-fine particle and $0.1{\mu}m{\sim}0.9{\mu}m$ cubic type particles. In this study, we analyze how the different shape and size of precipitated calcium carbonate affects in the optical and mechanical properties of the recycled paper used as a filler. Furthermore, we mixed with chemical pulp for overcome reduce of mechanical properties, without using other chemicals, when we use PCC as a filler. The results has the possibility to meet in GR excellent recycling certification mark, standard was proposed.

Analysis of Injection Efficiency for Cement Grouts by Model Test of Permeation in Soil (지반침투모형시험에 의한 시멘트그라우트의 주입성능 분석)

  • Song, Young-Su;Lim, Heui-Dae;Choi, Dong-Nam
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • When cement grout is used for waterproofing of grounds, important roles are played by fluidity, particle size and bleeding. The most important element which determines their characteristics is the water/cement ratio of grout. Moreover in order to improve the efficiency of soil permeation, micro cement with a smaller average diameter is used in addition to ordinary portland cement. Besides the mixing ratio and cement diameter, the condition of ground is also of fundamental importance in the efficiency of permeation. In order to evaluate grout in terms of permeation ability into ground, we need a field test of grounting, which is cost and time consuming. In this paper we present a laboratory test method in which the suitability and efficiency of grouts are simply and more practically tested. In Korea neither a test standard nor devices are available to simulate grouting in a laboratory. We devised a grout injection equipment in which grouting was reproduced in the same condition with different materials, and suggested a standard for the production of specimens. Our tests revealed that the efficiency of injection increases with the water/cement ratio. We also found that more efficiently injected is the grout with the order of decreasing size; MS8000, micro cement, and ultra fine cements, and colloidal super cement.