• Title/Summary/Keyword: Ultra-fine grain

Search Result 74, Processing Time 0.026 seconds

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as n Function of Applied Load (결정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸 기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.421-424
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained (UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

  • PDF

Sliding Wear Mechanism of Ultra-Fine Grained Low Carbon Dual Phase Steel as a Function of Applied Load (경정립 미세화에 따른 이상조직 탄소강의 하중에 따른 마멸기구)

  • Yu, H.S.;Yi, S.K.;Shin, D.H.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.299-303
    • /
    • 2007
  • Dry sliding wear behavior of ultra-fine grained(UFG) plain low carbon dual phase steel, of which microstructure consists of hard martensite in a ductile ferrite matrix, has been investigated. The wear characteristics of the UFG dual phase steel was compared with that of a coarse grained dual phase steel under various applied load conditions. Dry sliding wear test were carried out using a pin-on-disk type tester at various loads of 1N to 100N under a constant sliding speed condition of 0.20m/s against an AISI 52100 bearing steel ball at room temperature. The sliding distance was fixed as 1000m for all wear tests. The wear rate was calculated by dividing the weight loss, measured to the accuracy of 10-5g by the specific gravity and sliding distance. The worn surfaces and wear debris were analyzed by SEM, EDS and profilometer. Micro-vickers hardness of the cross section of worn surfaces were conducted to analyze strain hardening underneath the contact surfaces. The wear mechanism of the UFG dual phase steel was investigated with emphasis on the unstable nature of the grain boundaries of the UFG microstructure.

Fabrication of Ultra fine WC-Ni Hard Materials by Rapid Sintering Process

  • Kim Hwan-Cheol;Oh Dong-Young;Shon In-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2004.11a
    • /
    • pp.98-99
    • /
    • 2004
  • (1) Using high-frequency induction heating sintering and spark plasma sintering method, the densification of WC-Ni hard materials was accomplished using ultra fine power of Ni and WC. (2) Nearly fully dense WC-Ni could be obtained within 1 min. (3) Relative density and mechanical properties of WC-Ni obtained by HFIHS were high than those obtained by SPS. And WC grain size made by HFIHS was smaller than that made by SPS. (4) The fracture toughness and hardness values of WC-8Ni, WC-10Ni, and WC-12Ni made by HFIHS were $13MPa{\cdot}m^{1/2}\;and\;1950kg/mm^2,\;13.5Mpa{\cdot}m^{1/2}\;and\;1810kg/mm^2,\;14.4MPa{\cdot}m^{1/2}\;and\;1690kg/mm^2$, respectively for 60MPa and an induced current for 90% output of total capacity, 15KW. (5) The fracture toughness and hardness values of WC-8Ni, WC-10Ni, and WC-12Ni made by SPS were $12.2MPa{\cdot}m^{1/2}\;and\;1796kg/mm^2,\;12.9MPa{\cdot}m^{1/2}\;and\;1725kg/mm^2,\;13.6MPa{\cdot}m^{1/2}\;and\;1597kg/mm^2$, respectively for 60MPa and the electric current of 2500 A

  • PDF

Development of diamond wheel for ultra precision and high performance grinding of difficult-to-materials (난삭재의 초정밀.고능률 연삭가공을 위한 다이아몬드숫돌의 개발)

  • Heo, Seong-Jung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2172-2178
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted. Wheels, that are employed for ultra precision and high performance grinding of difficult-to materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond grains were bonded firmly by a melamine resin to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work surfaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are suggested, and the grinding characteristics of wheels are also illustrated.

Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet (알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF

Evaluation of Homogeneous Ultra-fine Grain Refinements via Equal Channel Angler Pressing Process (등통로각압축공정을 통한 결정립의 균질한 초미세립화에 대한 고찰)

  • Kim, W.;Lee, H.H.;Seo, S.J.;Lee, J.K.;Yoon, T.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.222-226
    • /
    • 2018
  • Severe plastic deformation (SPD) is a promising method for drastically enhancing the mechanical properties of the materials by grain refinement of metallic materials. However, inhomogeneous deformation during the SPD process results in the inhomogeneous microstructure of the SPD-processed material. We manufactured cylindrical copper specimens of 42 mm in diameter with ultrafine grains (UFG) using an equal channel angular pressing (ECAP) to figure out the relationship between homogeneous microstructure and the number of the processing passes. Two specimens, which are ECAP-processed 4 times (4pass) and 6 times (6pass) each with Route Bc, are prepared for comparison of mechanical properties and microstructure. The results show that the mechanical properties of the two specimens (4pass and 6pass) are similar. Moreover, both the specimens show highly enhanced mechanical properties. The 4pass specimen, however, shows inhomogeneity in hardness distribution, while the 6pass specimen shows a homogeneous distribution. Microstructure analysis reveals that the 4pass specimen has an inhomogeneous microstructure with incompletely refined grain structure. This inhomogeneity of the 4pass specimen could be explained by the circumferential rotation during ECAP process.

A Study on the Mechanical Properties of Ag-X(X=Cu,Ni,C) Alloys Prepared by the Vacuum-deposition Technique (진공증착법으로 제작한 Ag-X(X=Cu,Ni,C) 합금의 기계적 성질에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.243-250
    • /
    • 2011
  • When alloys are vacuum-deposited on cooled substrates, super-rapidly cooled alloy films in the unequilibrium state can be obtained. As an application of this method, Ag-Cu, Ag-Ni and Ag-C alloys were successfully produced, and their mechanical properties with tempering temperature were investigated. The following results were obtained : (1) In case of Ag-Cu alloys, the solid solution was hardened by tempering at $150^{\circ}C$. The hardening is considered to occur when the solid solution begins to decompose into ${\alpha}$ and ${\beta}$ phases. The Knoop hardness number of a 40 at.%Ag-Cu alloy film deposited on a cooled glass substrate was 390 $kg/mm^2$. The as-deposited films were generally very hard but fractured under stresses below their elastic limits. (2) In case of Ag-Ni and Ag-C alloys, after the tempering of 4 at.%Ni-Ag alloy at $400^{\circ}C$ and of 1 and 2 at.%C-Ag alloys at $200^{\circ}C$, they were hardened by the precipitation of fine nickel and carbon particles. The linear relationship between proof stress vs. $(grain\;diameter)^{-l/2}$ for bulk silver polycrystals can be applied to vacuum-deposited films up to about 0.1 ${\mu}m$ grain diameter, but the proof stress of ultra-fine grained silver with grain diameters of less than 0.1 ${\mu}m$ was smaller than the value expected from the Petch's relation.

A Study on the Engineering Properties of Ultra High-Strength Concrete Utilizing Crushed Sand (부순모래를 사용한 초고강도 콘크리트의 공학적 특성에 관한 연구)

  • Lee, Sang-Soo;Rho, Hyoung-Nam;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • Recently, the demand of ultra high-rise building is on the increase in korea due to the rapidly changing movement in economic growth and the expansion of national infrastructure. At the same time, the tendency toward the amount used of concrete has greatly increased every year. In addition, as the seriousness of quantity demanded of aggregate is gathering strength, the active areas of research proceeds to do actively in every place in order to review the usability of crushed sand as a part of the countermeasures. And, it needs to establish the quality standard and service guide, etc. for the practical use. Accordingly, this study was to establish the ratio of water-binder materials as three levels like 23.5, 27.5, and 31.5%, and the replacement ratio as three levels like 0, 50, and 100% in order to define the engineering properties of ultra high-strength concrete using the crushed sand. This study was to examine it after establishing the combined condition by the substitute of the fine aggregate percentage and admixture. From the result of this research above, it may be summed up as follows. 1) The more the replacement ratio of crushed sand and the ratio of water-binder materials increased, the mon the fluidity decreased due to the decrease of irregular grain shape of sand and unit combined discretion. 2) This study found out that 100% of replacement ratio of crushed sand was almost similar level to the compressive strength of concrete using the natural sand.

Mechanical Properties and Sintering of Ultra Fine WC-Graphene-Al Composites (초미립 WC-Graphene-Al2O3 복합재료 소결 및 기계적 성질)

  • In-Jin Shon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.206-214
    • /
    • 2023
  • Tungsten carbide has many industrial applications due to its high electrical and thermal conductivity, high melting temperature, high hardness and good chemical stability. Because tungsten carbide is difficult to sinter, it is sintered with nickel or cobalt as a binder and is currently used in nozzles, cutting tools, and molds. Alumina is reported to be a viable binder for tungsten carbide due to its higher oxidation resistance and lower cost than nickel and cobalt. The ultrafine tungsten carbide-graphene-alumina composites were rapidly sintered in a high frequency induction heating active sintering unit. The microstructure and mechanical properties (fracture toughness and hardness) of the composites were investigated and analyzed by Vickers hardness tester and electron microscope. Since the high-frequency induction heating sintering method enables high-speed sintering, ultrafine composites can be prepared by preventing grain growth. In the tungsten carbide-graphene-alumina composites, the grain size of tungsten carbide increased with the amount of alumina participation. The hardness and fracture toughness of the tungsten carbide-5% graphene- x% alumina (x = 0, 5, 10,15) composites were 5.1, 8.6, 8.6, and 8.4 MPa-m1/2 and 2384, 2168, 2165, and 2102 kg/mm2, respectively. The fracture toughness increased without a significant decrease in hardness. Sinterability was improved by adding alumina to tungsten carbide-graphene.

Self-Organized Nano Structure in Co-22% Cr Alloy Thin Films with Substrate Temperatures (기판온도에 따른 Co-22%Cr 합금박막의자가정렬형 나노구조)

  • 송오성;이영민
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.6
    • /
    • pp.531-536
    • /
    • 2001
  • Co-22 %Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure (SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. The periodic fine Co-enriched phase and Cr-enriched phase is the plate shape of 80 (equation omitted)-wide and 1000 (equation omitted)-long. Cr-enriched phases are located at the center of grains. We prepared 5000 (equation omitted) -thick Co-22 %Cr films on polyimide substrate with varying substrate temperature of $ 30^{\circ}C$, $ 150^{\circ}C$ ,200 $^{\circ}C$, $300^{\circ}C$, and $400^{\circ}C$, respectively. A transmission electron microscope equipped with energy dispersive X-ray analyzer is employed to observe the microstructure of each samples after Co-enri-ched phase are etched selectively. The self organized nano structure of Co-enriched and Cr-enriched lamellar is observed above the substrate temperture of $150^{\circ}C$. No compositional change is observed with substrate temperature. The compositional phase separation in self organized structure becomes clear as the substrate temperature increases. Our results implies that the self organized nano structure in Co-22 %Cr film is ideal for ultra high density recording media by recording selectively on Co-enri-ohed phase.

  • PDF