• Title/Summary/Keyword: Ultra-Precision-machining

Search Result 300, Processing Time 0.034 seconds

Re-Ir Coating Effect of WC Core Surface for Aspheric Glass Lens Molding (비구면 Glass 렌즈 성형용 초경합금 코어면 Re-Ir 코팅 효과)

  • Kim, Hyun-Uk;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.441-441
    • /
    • 2007
  • As Rhenium-Iridium{Re-Ir) coating possesses such features as, high hardness, high elasticity, abrasion resistance and chemical stability, there have been exerted continuous efforts in research works in a variety of fields, and this technology has also been applied widely to industrial areas. In this research, the optimal grinding condition was identified using Microlens Process Machine in order to contribute to the development of aspheric glass lens for mobile phone module having 3 mega pixel and 2.5X zoom, and molding core(WC) was manufactured having performed ultra-precision machining. Effects of Re-Ir coating on form accuracy (P-V) of molding core and surface roughness(Ra) were measured and evaluated.

  • PDF

Development of Error Compensation System and On the Machine Measurement System for Ultra-Precision Machine (초정밀가공기용 오차보상시스템 및 기상측정장치 개발)

  • 이대희;나혁민;오창진;김호상;민흥기;김민기;임경진;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.599-603
    • /
    • 2003
  • This paper present an error compensation system and On-Machine Measurement(OMM) system for improving the machining accuracy of ultra-precision lathe. The Fast-Tool-Servo(FTS) driven by a piezoelectric actuator is applied for error compensation system. The controller is implemented on the 32bit DSP for feedback control of piezoelectric actuator. The control system is designed to compensates three kinds of machining errors such as the straightness error of X-axis slide, the thermal growth error of the spindle. and the squareness between spindle and X-axis slide. OMM is preposed to measure the finished profile of workpiece on the machine-tool using capacitive sensor with highly accurate ruby tip probe guided by air bearing. The data acquisition system is linked to the CNC controller to get the position of each axis in real-time. Through the experiments, it is founded that the thermal growth of spindle and tile squareness error between spindle and X-axis slide influenced to machining error more than straightness error of X-axis slide in small travel length. These errors were simulated as a sinusoidal signal which has very low frequency and the FTS could compensate the signal less than 30 m. The implemented OMM system has been tested by measuring flat surface of 50 mm diameter and shows measurement error less than 400 mm

  • PDF

The Characteristics on Ultra Precision Machining for Infrared Optical Materials (Infrared 광학초자의 초정밀 가공 특성)

  • Yang, Sun-Choel;Huh, Myung-Sang;Kim, Sang-Hyuk;Lee, Gil-Jae;Lee, Sang-Yong;Kook, Myung-Ho;Chang, Ki-Soo;Ryu, Seon-Young;Won, Jong-Ho;Kim, Geon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.253-260
    • /
    • 2012
  • In nowadays, the infrared optics is frequently employed to various fields such as military, aerospace, industry and medical. To develop the infrared optics, special glasses which can transmit infrared wave are required. Ge(Germanium), Si(silicon), and fluoride glasses are typically used for material of the infrared optics. Compared with Ge and Si glasses, fluoride glasses have high transmittance in infrared wavelength range. Additionally, UV(ultraviolet) and visible light can be transmitted through fluoride glasses. There characteristics of fluoride glasses makes it possible to evaluate optical performance with generally used visible testing equipment. In this paper, we used design of experiment to find ultra precision machining characteristic of Ge and fluoride glasses and optimized machining process to obtain required form accuracy of PV(Peak to Valley) $0.2\;{\mu}m$.

Selection of optimal machining condition for productivity enhancement of aspheric surface lens (비구면 렌즈의 생산성 향상을 위한 최적가공조건선정)

  • Baek S.Y.;Lee H.D.;Kim S.C.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.561-562
    • /
    • 2006
  • To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

  • PDF

A Study on the Centrifugal Barrel Machining of Round Face (원형단면의 정밀 원심 배럴가공에 관한 연구)

  • 고준빈;김우강;원종호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.179-185
    • /
    • 2004
  • Surface finish technology is highly demanded in the wide field of industry applications from ultra-precision parts to rough casting parts. Therefore, many kinds of surface finish technologies have been developed for each purpose. Because surface of a car's wheel cast is very rough it becomes the reason of the corrosion. This surface is coated to complement such problem but because surface is rough, the result of coating is not good and the coated metal peels off well. Therefore before the wheel is coated, it is necessary to grind the surface. In this study, we devised the plant to apply a barrel machining to improve the surface roughness and enhance the productivity. Also we could obtain the optimum barrel machining conditions for the proper surface roughness.

Ultra-precision Free-form Surface Grinding of WC Core (초경 금형의 자유 곡면 초정밀 연삭)

  • Park, Soon-Sub;Hwang, Yeon;Kim, Geon-Hee;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.64-71
    • /
    • 2009
  • Cylindrical lens core for optical transceiver was designed and machined. With the lens design data, WC asymmetric core surface data were generated for non-revolutional ultra-precision grinding. Grinding process for optimum machining conditions of target surface was studied in terms of surface roughness and form profile. We used experimental results to optimize turbine speed, feed-rate and depth of cut with durable grinding wheel wear. Ground WC cores were measured contact type profilers and verified.

Ultra-precision cutting of Plastics for Optical Components by Elliptical Vibration Cutting (타원진동절삭가공법에 의한 광학용 플라스틱의 초정밀절삭)

  • 송영찬;사본영이;삼협준도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.34-37
    • /
    • 2004
  • In the present research, a ultra-precision diamond cutting of thermo-plastic materials, polycarbonate (PC) and cyclic olefin polymer (COC), is carried out by applying a method named ultrasonic elliptical vibration cutting developed by the authors. It is experimentally proved that good optical surfaces are obtained by applying the elliptical vibration cutting in cases of machining of flat surfaces and grooves as compared with the conventional diamond cutting. The maximum surface roughness in peak to valley value obtained is less than 60 nm and 20 nm for PC and ZEONEX, respectively.

  • PDF