• 제목/요약/키워드: Ultra-Lightweight

검색결과 92건 처리시간 0.025초

Ultra Thin 실리콘 웨이퍼를 이용한 RF-MEMS 소자의 웨이퍼 레벨 패키징 (Wafer Level Packaging of RF-MEMS Devices with Vertical feed-through)

  • 김용국;박윤권;김재경;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1237-1241
    • /
    • 2003
  • In this paper, we report a novel RF-MEMS packaging technology with lightweight, small size, and short electric path length. To achieve this goal, we used the ultra thin silicon substrate as a packaging substrate. The via holes lot vortical feed-through were fabricated on the thin silicon wafer by wet chemical processing. Then, via holes were filled and micro-bumps were fabricated by electroplating. The packaged RF device has a reflection loss under 22 〔㏈〕 and a insertion loss of -0.04∼-0.08 〔㏈〕. These measurements show that we could package the RF device without loss and interference by using the vertical feed-through. Specially, with the ultra thin silicon wafer we can realize of a device package that has low-cost, lightweight and small size. Also, we can extend a 3-D packaging structure by stacking assembled thin packages.

초경량 실리카 에어로젤 초단열재의 현황 및 전망 (Status And Perspectives of Ultra-Lightweight Silica Aerogel Superinsulation Materials)

  • 서동진
    • 청정기술
    • /
    • 제28권4호
    • /
    • pp.301-308
    • /
    • 2022
  • 나노다공성 실리카 에어로젤은 1931년 처음 합성된 이후 초경량 초단열재로서의 가능성이 꾸준히 주목받고 있다. 실리카 에어로젤은 현재까지 알려진 최고의 단열재이지만 소재 자체의 초다공성 특성으로 인해 본질적으로 피할 수 없는 부서지거나 깨지기 쉬운 성질 때문에 지금까지 실제 적용 가능성에는 한계가 있는 것도 사실이다. 단일체 형태의 실리카 에어로젤이 초경량 초단열 특성이 가장 우수하지만 그대로 사용할 수 없고 분말, 입자, 블랭킷 형태로 사용되고 있으며 그조차도 아직은 기대에 미치지 못하고 있다. 가장 널리 적용되는 형태의 실리카 에어로젤은 섬유에 담지시킨 에어로젤 블랭킷이지만 취급 시 먼지가 발생할 가능성이 있다. 실리카 에어로젤 입자가 인체에 독성이 없는 것으로 알려져 있지만 먼지 생성은 실리카 에어로젤 블랭킷의 광범위한 활용에는 가장 큰 장애요인으로 남아 있다. 본 논문에서는 실리카 에어로젤이 어떤 고유한 성질을 가지고 있는지, 그리고 그 고유한 성질을 이용하여 어떤 분야에 사용될 수 있거나 사용될 가능성이 있는지에 대해 살펴볼 것이다. 또한 지금까지의 중요한 합성 기술의 발전과 상용화가 진행되었던 과정을 살펴보고 향후 본격적인 상용화를 위해서는 어떤 문제점이 있고 그 극복 방안은 어떠한지 검토해 보고자 한다.

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.1001-1021
    • /
    • 2015
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1,450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. This paper investigates the structural performances of SCS sandwich composite beams with ULCC as filled material. Overlapped headed shear studs were used to provide shear and tensile bond between the face plate and the lightweight core. Three-dimensional nonlinear finite element (FE) model was developed for the ultimate strength analysis of such SCS sandwich composite beams. The accuracy of the FE analysis was established by comparing the predicted results with the quasi-static tests on the SCS sandwich beams. The FE model was also applied to the nonlinear analysis on curved SCS sandwich beam and shells and the SCS sandwich beams with J-hook connectors and different concrete core including ULCC, lightweight concrete (LWC) and normal weight concrete (NWC). Validations were also carried out to check the accuracy of the FE analysis on the SCS sandwich beams with J-hook connectors and curved SCS sandwich structure. Finally, recommended FE analysis procedures were given.

Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60MPa

  • Chia, Kok-Seng;Liu, Xuemei;Liew, Jat-Yuen Richard;Zhang, Min-Hong
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.635-652
    • /
    • 2014
  • Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 $kg/m^3$ and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (${\geq}$ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

Numerical studies of steel-concrete-steel sandwich walls with J-hook connectors subjected to axial loads

  • Huang, Zhenyu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • 제21권3호
    • /
    • pp.461-477
    • /
    • 2016
  • Steel-concrete-steel (SCS) sandwich composite wall has been proposed for building and offshore constructions. An ultra-lightweight cement composite with density1380 kg/m3 and compressive strength up to 60 MPa is used as core material and inter-locking J-hook connectors are welded on the steel face plates to achieve the composite action. This paper presents the numerical models using nonlinear finite element analysis to investigate the load displacement behavior of SCS sandwich walls subjected to axial compression. The results obtained from finite element analysis are verified against the test results to establish its accuracy in predicting load-displacement curves, maximum resistance and failure modes of the sandwich walls. The studies show that the inter-locking J-hook connectors are subjected to tension force due to the lateral expansion of cement composite core under compression. This signifies the important role of the interlocking effect of J-hook connectors in preventing tensile separation of the steel face plates so that the local buckling of steel face plates is prevented.

초경량 콘크리트 흡음재의 음향특성에 관한 연구 (A Study on the Acoustical Characteristic of a Ultra Lightweight Concrete Absorber)

  • 정성수;김용태;이원암;한기석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.594-599
    • /
    • 2000
  • Two basic acoustic quantities, the characteristic impedances and the propagation constants, of the two different ultra lightweight concrete absorbers were examined with impedance tube method. A transmission loss was tested and compared with theoretical values. The results show that these kinds of sample have proper sound absorption and transmission loss capabilities. It means that they can be used in various fields where noise proof is needed.

  • PDF

4가지 운영모드를 지원하는 초경량 블록암호 PRESENT의 하드웨어 구현 (A Hardware Implementation of Ultra-Lightweight Block Cipher PRESENT Supporting Four Modes of Operation)

  • 김기쁨;조욱래;신경욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.151-153
    • /
    • 2016
  • 80/128-비트 마스터키 길이와 ECB, CBC, OFB, CTR의 4가지 운영모드를 지원하는 PRESENT 경량 블록암호 프로세서를 설계하고, Virtex5 FPGA에 구현하여 정상 동작함을 확인하였다. PRESENT 크립토 프로세서를 $0.18{\mu}m$ 공정의 CMOS 셀 라이브러리로 합성한 결과 8,237 GE로 구현되었으며, 최대 434 MHz 클록으로 동작하여 868 Mbps의 성능을 갖는 것으로 예측되었다.

  • PDF

NOx 저감을 위한 다공성 광촉매 콘크리트 필터 제조 및 효율평가 (Porous Photocatalytic Concrete Filter Manufacturing and Efficiency Evaluation for NOx Reduction)

  • 김종규
    • 한국재료학회지
    • /
    • 제32권4호
    • /
    • pp.223-229
    • /
    • 2022
  • A porous photocatalyst concrete filter was successfully produced to remove NOx, by mixing TiO2 photocatalyst with lightweight aerated concrete. Ultra Fine Bubbles were used to form continuous pores inside the porous photocatalytic concrete filter, which was mixed via a bubble generation experiment. The optimal mixing condition was determined to be with 4 % of the bubble generation agent B. NO removal specimens were prepared for various photocatalytic loading conditions, and the specimen containing 3 % P-25 removed NO at a concentration of 1.03 µmol in 1 h. The NO removal rate of the porous photocatalytic concrete filter prepared in this study was 10.99 %. This photocatalytic filter performance was more than 9 times the amount of NO removed by a general photocatalytic filter. The porous photocatalyst concrete filter for removing NOx developed in this study can be applied to various construction sites and the air quality can be solved by reducing NOx contributing to the formation of fine particles.

하이브리드 제조공정을 이용한 자동차 로어암의 개발 (Development of Automotive Lower Ann using Hybrid Manufacturing Process)

  • 소상우;황현태;이종현;최흥원
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.214-218
    • /
    • 2011
  • In order to survive in turbulent and competitive markets, automotive part manufacturers try efforts to develop new manufacturing technologies for ultra-lightweight, high-intensity and environmentally-friendly parts. Most of front lower arm is manufactured by welding process between upper- and lower panel which are produced by press stamping process. Because lower arm mounted on the cross member parts is one of the important complementary parts. So, to improve safety and lightweight of these parts, hybrid technologies are used in this paper. As hybrid technologies are applied to be front sub-frame, rear cross member and other chassis parts as well as front lower arm, the 20% lightweight has been achieved compared with existing steel parts.

A Lightweight Software-Defined Routing Scheme for 5G URLLC in Bottleneck Networks

  • 맛사;담프로힘;김석훈
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.1-7
    • /
    • 2022
  • Machine learning (ML) algorithms have been intended to seamlessly collaborate for enabling intelligent networking in terms of massive service differentiation, prediction, and provides high-accuracy recommendation systems. Mobile edge computing (MEC) servers are located close to the edge networks to overcome the responsibility for massive requests from user devices and perform local service offloading. Moreover, there are required lightweight methods for handling real-time Internet of Things (IoT) communication perspectives, especially for ultra-reliable low-latency communication (URLLC) and optimal resource utilization. To overcome the abovementioned issues, this paper proposed an intelligent scheme for traffic steering based on the integration of MEC and lightweight ML, namely support vector machine (SVM) for effectively routing for lightweight and resource constraint networks. The scheme provides dynamic resource handling for the real-time IoT user systems based on the awareness of obvious network statues. The system evaluations were conducted by utillizing computer software simulations, and the proposed approach is remarkably outperformed the conventional schemes in terms of significant QoS metrics, including communication latency, reliability, and communication throughput.