• Title/Summary/Keyword: Ultra short base line(USBL)

Search Result 10, Processing Time 0.031 seconds

Covariance-based source localization performance improvement for underwater ultra-short baseline systems (공분산 기반 수중 ultra-short baseline 시스템의 위치 추정 성능 개선 기법)

  • Sangman Han;Minhyuk Cha;Haklim Ko;Hojun Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.89-94
    • /
    • 2024
  • Since Ultra-Short BaseLine (USBL) uses an array with narrow sensor spacing, precise synchronization is required to improve source localization performances. However, in the underwater environment, synchronization errors occur due to relatively strong noise and underwater acoustic channels such as multipath and Doppler, which deteriorates the source localization performances. This paper proposes a covariance-based synchronization compensation method to improve the source localization performances of the underwater USBL systems. The proposed method arranges the received signals through cross-correlation and calculates the covariance of the arranged signals. The synchronization error is related to the phase difference in the covariance. Thus, the phase difference is estimated as the covariance and compensated. Computer simulations demonstrate that the proposed method has better source localization performances than the conventional cross-correlation method.

Development of Underwater Vehicle Position Tracking Algorithm by using a Gyro-Doppler Sensor and Ultra Short Base Line (자이로 도플러 센서와 USBL을 통한 수중체 위치추적 알고리즘개발)

  • Kim, Deok-Jin;Park, Dong-Won;Park, Yeon-Sic
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1973-1977
    • /
    • 2006
  • This paper reports the absolute position tracking algorithm of underwater vehicles such as ROV, AUV in global region by fusing sensor informations of IMU, DVL, USBL, DGPS etc. This algorithm is to be used in the position tracking of the 6,000m class deep-sea unmanned underwater vehicle, HEMIRE for scientific exploration.

USBL Underwater Positioning Algorithm using Phase Spectrum (위상 스펙트럼에 의한 USBL 수중위치 추정기법 연구)

  • 이용곤;이상국;도경철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.85-91
    • /
    • 2000
  • Underwater sensor accuracy test which measures the detection range and bearing accuracies of sonar simulates sonar transmitting ping and underwater radiating noise of target vessels. In this test, because the position of sonar target is the reference position of test, the sonar target position should be precisely estimated. Hence, this paper suggests to apply USBL algorithm which adopts cross phase spectrum of received sensor signals, and presents its performance by range and bearing estimation simulations. As a result of simulations, suggested algorithm shows good accuracy for underwater sensor accuracy test near 5㏈ SNR.

  • PDF

Implementation of underwater precise navigation system for a remotely operated mine disposal vehicle

  • Kim, Ki-Hun;Lee, Chong-Moo;Choi, Hyun-Taek;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This paper describes the implementation of a precise underwater navigation solution using a multiple sensor fusion technique based on USBL, GPS, DVL and AHRS measurements for the operation of a remotely operated mine disposal vehicle (MDV). The estimation of accurate 6DOF positions and attitudes is the key factor in executing dangerous and complicated missions. To implement the precise underwater navigation, two strategies are chosen in this paper. Firstly, the sensor frame alignment to the body frame is conducted to enhance the performance of a standalone dead-reckoning algorithm. Secondly, absolute position data measured by USBL is fused to prevent cumulative integration error. The heading alignment error is identified by comparing the measured absolute positions with the DR algorithm results. The performance of the developed approach is evaluated with the experimental data acquired by MDV in the South-sea trial.

Estimation of MineRo's Kinematic Parameters for Underwater Navigation Algorithm (수중항법 알고리즘을 위한 미내로 운동학 파라미터 예측)

  • Yeu, Tae-Kyeong;Yoon, Suk-Min;Park, Soung-Jea;Hong, Sup;Choi, Jong-Su;Kim, Hyung-Woo;Kim, Dae-Won;Lee, Chang-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.69-76
    • /
    • 2011
  • A test miner named MineRo was constructed for the purpose of shallow water test of mining performance. In June of 2009, the performance test was conducted in depth of 100 m, 5 km away from Hupo-port (Korean East Sea), to assess if the developed system is able to collect and lift manganese nodules from seafloor. In August of 2010, in-situ test of automatic path tracking control of MineRo was performed in depth of 120 m at the same site. For path tracking control, a localization algorithm determining MineRo's position on seabed is prerequisite. This study proposes an improved underwater navigation algorithm through estimation of MineRo's kinematic parameters. In general, the kinematic parameters such as track slips and slip angle are indirectly calculated using the position data from USBL (Ultra-Short Base Line) system and heading data from gyro sensors. However, the obtained data values are likely to be different from the real values, primarily due to the random noise of position data. The aim of this study is to enhance the reliability of the algorithm by measuring kinematic parameters, track slips and slip angle.

Deep Sea Three Components Magnetometer Survey using ROV (ROV를 이용한 심해 삼성분자력탐사 방법연구)

  • Kim, Chang-Hwan;Park, Chan-Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.298-304
    • /
    • 2011
  • We conducted magnetic survey using IBRV (Ice Breaker Research Vessel) ARAON of KORDI (Korea Ocean Research and Development Institute), ROV (Remotely Operated Vehicle) of Oceaneering Co. and three components vector magnetometer, at Apr., 2011 in the western slope of the caldera of TA25 seamount, the Lau Basin, the southwestern Pacific. The depth ranges of the survey area are from about 900 m to 1200 m, below sea level. For the deep sea magnetic survey, we made the nation's first small deep sea three components magnetometer of Korea. The magnetometer sensor and the data logger was attached with the upper part and lower part of ROV, respectively. ROV followed the planning tracks at 25 ~ 30 m above seafloor using the altimeter and USBL (Ultra Short Base Line) of ROV. The three components magnetometer measured the X (North), Y (East) and Z (Vertical) vector components of the magnetic field of the survey area. A motion sensor provided us the data of pitch, roll, yaw of ROV for the motion correction of the magnetic data. The data of the magnetometer sensor and the motion sensor were recorded on a notebook through the optical cable of ROV and the network of ARON. The precision positions of magnetic data were merged by the post-processing of USBL data of ROV. The obtained three components magnetic data are entirely utilized by finding possible hydrothermal vents of the survey area.

Implementation of Deep-sea UUV Precise Underwater Navigation based on Multiple Sensor Fusion (다중센서융합 기반의 심해무인잠수정 정밀수중항법 구현)

  • Kim, Ki-Hun;Choi, Hyun-Taek;Kim, Sea-Moon;Lee, Pan-Mook;Lee, Chong-Moo;Cho, Seong-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.46-51
    • /
    • 2010
  • This paper describes the implementation of a precise underwater navigation solution using a multi-sensor fusion technique based on USBL, DVL, and IMU measurements. To implement this precise underwater navigation solution, three strategies are chosen. The first involves heading alignment angle identification to enhance the performance of a standalone dead-reckoning algorithm. In the second, the absolute position is found quickly to prevent the accumulation of integration error. The third one is the introduction of an effective outlier rejection algorithm. The performance of the developed algorithm was verified with experimental data acquired by the deep-sea ROV, Hemire, in the East-sea during a survey of a methane gas seepage area at a 1,500 m depth.

Multiple Sensor Fusion Algorithm for the Altitude Estimation of Deep-Sea UUV, HEMIRE (심해무인잠수정 해미래의 고도정보 추정을 위한 다중센서융합 알고리즘)

  • Kim, Dug-Jin;Kim, Ki-Hun;Lee, Pan-Mook;Cho, Sung-Kwon;Park, Yeoun-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1202-1208
    • /
    • 2008
  • This paper represents the multiple sensor fusion algorithm for the deep-sea unmanned underwater vehicles (UUV), composed of a remotely operated vehicle (ROV) 'Hemire' and a depressor 'Henuvy'. The performance of underwater positioning system usually highly depend on that of acoustic sensors such as ultra short base line(USBL), long base line(LBL) and altimeter. A practical sensor fusion algorithm is proposed in the sense of a moving window concept. The performance of the proposed algorithm can be observed by applying the algorithm to the Hemire sea trial data which was measured at the East Sea.

Development of Underwater Positioning System using Asynchronous Sensors Fusion for Underwater Construction Structures (비동기식 센서 융합을 이용한 수중 구조물 부착형 수중 위치 인식 시스템 개발)

  • Oh, Ji-Youn;Shin, Changjoo;Baek, Seungjae;Jang, In Sung;Jeong, Sang Ki;Seo, Jungmin;Lee, Hwajun;Choi, Jae Ho;Won, Sung Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.352-361
    • /
    • 2021
  • An underwater positioning method that can be applied to structures for underwater construction is being developed at the Korea Institute of Ocean Science and Technology. The method uses an extended Kalman filter (EKF) based on an inertial navigation system for precise and continuous position estimation. The observation matrix was configured to be variable in order to apply asynchronous measured sensor data in the correction step of the EKF. A Doppler velocity logger (DVL) can acquire signals only when attached to the bottom of an underwater structure, and it is difficult to install and recover. Therefore, a complex sensor device for underwater structure attachment was developed without a DVL in consideration of an underwater construction environment, installation location, system operation convenience, etc.. Its performance was verified through a water tank test. The results are the measured underwater position using an ultra-short baseline, the estimated position using only a position vector, and the estimated position using position/velocity vectors. The results were compared and evaluated using the circular error probability (CEP). As a result, the CEP of the USBL alone was 0.02 m, the CEP of the position estimation with only the position vector corrected was 3.76 m, and the CEP of the position estimation with the position and velocity vectors corrected was 0.06 m. Through this research, it was confirmed that stable underwater positioning can be carried out using asynchronous sensors without a DVL.

Buoyancy Engine Independent Test Module Test in the the Deep Ocean Engineering Basin and at Sea (부력엔진 독립시험 모듈 심해공학수조 시험과 실해역 시험)

  • Chong-Moo Lee;Hyungwoo Kim;Heung Hyun Lim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.629-634
    • /
    • 2024
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO) has developed a test module that can vertically ascend and descend with a buoyancy engine to verify the performance of the developed buoyancy engine. The independent test module has been tested in the Ocean Engineering Basin(C.M.Lee et al., 2023). After that, more tests were performed in the Deep Ocean Engineering Basin and at sea. In the 50-meter depth pit test of the Deep Ocean Engineering Basin, there were no problems with the ascent and descent operations, but the buoyancy engine was not properly maintained due to various problems in the independent test module, resulting in a difference between the calculated results using the solution of the equations of motion and the actual measurement results. The East Sea test was conducted at a depth of approximately 110 meters north-east of Pohang, with a dive to 100 meters. The difference between the pressure sensor value and the calculated value was observed, but after checking the results of the underwater position tracking device(USBL, Ultra Short Base Line system), it was estimated that the difference was caused by the influence of the current.