• 제목/요약/키워드: Ultra precision turning

검색결과 79건 처리시간 0.027초

SPDT를 이용한 대구경 Collimation Reflector 가공 연구 (A study on the manufacture of Large Collimation Reflector using SPDT)

  • 김건희;홍권희;김효식;박지영;박순섭;원종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.897-900
    • /
    • 2002
  • The collimation mirror will be used for thermal vacuum testing of spacecraft. The reflection mirror system to generate parallel beam inside the thermal vacuum chamber. A 600mm diameter aspheric Collimation mirror was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machining, but not polishable due to its ductility. Aspheric large collimation reflector without a conventional polishing process, the surface roughness of 10nmRa, and the from error of $\lambda/2 ~\lambda/4(\lambda$ =632.8 nm) for reference curved surface 600 mm has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of A16061-T651 and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

광학소자의 초정밀절삭 특성에 관한 연구 (The Characteristics of Ultra Precision Machining of Optical Crystal)

  • 김주환;박원규;김건희;원종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.529-532
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency. poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result. the surface roughness is good when spindle speed is 200m/min. and teed rate is small. The influence of depth of cut is very small.

  • PDF

단결정 실리콘의 초정밀가공 (Nano-turning of single crystal silicon)

  • 김건희;도철진;홍권희;유병주;원종호;박상진;안병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.939-942
    • /
    • 2000
  • Single point diamond turning technique for optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material.

  • PDF

광 정보저장용 픽업 렌즈의 다이아몬드 터닝 가공 (Diamond turning of pick-up lens for optical application)

  • 박순섭;김대중;이봉주;김상석;김정호;유영문;김주하
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2003
  • The aspherical lens are used as objective lens of optical pickup. The sample product is made before manufacturing the injection mould of lens to examine the design factor. The optimum cutting conditions of the main spindle speed, the depth of cut, the feed rate are found when we cut PMMA and PC lens sample with ultra-precision SPDT. The demanded surface roughness 10 nm Ra. aspherical form error 0.5 ${\mu}{\textrm}{m}$ P-V for aspherical lens of optical data storage device are satisfied for PMMA. but not satisfied for PC.

  • PDF

정전용량형 센서를 이용한 기상계측시스템의 개발 (Development of On-machine Measurement System utilizing a Capacitive-type Sensor)

  • 김건희;박순섭;박원규;원종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.391-395
    • /
    • 2002
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a leaf spring mechanism and a capacitive-type sensor. The contact probe is attached on the z-axis during measurement while aspheric objects are supported on the single point diamond turning machine(SPDTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of On-machine Measurement System in this investigation is capable of providing a repeatability of 20 nanometers with a $\pm$20 uncertainty of 300 nanometers.

  • PDF

Head Mounted Display 광학계 초정밀 가공특성에 관한 연구 (A Study on the Characteristics on Ultra Precision Machining of HMD Optical System)

  • 양순철;김건희;김효식;신현수;김명상;원종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.184-187
    • /
    • 2005
  • This paper is described about the technique of ultra-precision machining for optical parts in HMD system. Machining technique for PMMA and BK7 with single point diamond turning machining is reported in this paper. The main factors influencing on the machined surface quality are discovered and regularities of machining process are drawn. The purpose of our research is to find the optimum machining conditions fur cutting of PMMA and grinding of BK7. Also, apply the SPDTM technique to the manufacturing of ultra precision optical components of HMD system. Aspheric PMMA lens without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8nm)$ for reference curved surface 30 mm has been required.

  • PDF

다이아몬드 터닝머신을 이용한 금속 비구면 초정밀 절삭특성 (A study of metal aspheric reflector manufacturing in diamond turning machine)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.83-87
    • /
    • 2001
  • A 110 mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning (SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of $Ra={\lambda}/12({\lambda}=632nm)$ has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF