• Title/Summary/Keyword: Ultra precision grinding system

Search Result 31, Processing Time 0.029 seconds

Development of intelligent grinding system for aspherical surface machining (비구면 가공용 지능형 연삭 시스템 개발)

  • Baek, Seung-Yub;Lee, Hae-Dong;Kim, Sung-Chul;Lee, Eun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1099-1104
    • /
    • 2004
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system.

  • PDF

Selecting Optimal Dressing Parameters of Ultra-precision Centerless Grinding Based on the Taguchi Methodology (다구찌 방법론에 근거한 초정밀 센터리스 연삭의 최적 드레싱 가공 조건 선정)

  • Chun Y.J;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.108-113
    • /
    • 2005
  • In this study, rotary type diamond dressing system for ultra-precision centerless grinding for ferrule was developed at the first time and experiments were conducted with AE sensor and hall sensor system to verify the optimum dressing condition for ultra-precision centerless grinding for ferrule. The correlations with the condition of dressing are evaluated by AE signal analysis with root mean square (RMS) and frequency analysis. And current signals from hall sensor are also studied as a factor of dressing optimum condition selection. Dressing process was conducted to investigate the effects of depth of cut, rotating speed, and the number of overlap to select the optimum condition of rotary dressing system of ultra-precision centerless grinding machine for ferrule fabrication. In order to verify the optimum condition of dressing, AE and current signals were compared with the surface quality of dressing wheel and grinding wheel for ultra-precision ferrule grinding. All of these experiments were completed by Taguchi Methodology to reduce experimental time. Hence, the optimum condition of rotary dressing system for ultra-precision centerless grinding for ferrule fabrication can be selected following to the experiment result from signals of AE and hall sensor.

  • PDF

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

A study on the development of ultra-precision grinding system and manufacturing properties for aspheric surface micro lens (비구면 마이크로 렌즈 가공을 위한 초정밀 연삭 시스템 개발 및 가공 특성에 관한 연구)

  • Baek S.Y.;Lee H.D.;Kim S.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.15-18
    • /
    • 2005
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, The development of ultra-precision grinding system and manufacturing properties for the aspheric surface micro lens are described. In the work reported in this paper, and ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the surface roughness and profiles accuracy. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $3\;{\mu}m$ P-V and a surface roughness of $0.1\;{\mu}m\;R_{max}$.

  • PDF

Selection of optimal machining condition for productivity enhancement of aspheric surface lens (비구면 렌즈의 생산성 향상을 위한 최적가공조건선정)

  • Baek S.Y.;Lee H.D.;Kim S.C.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.561-562
    • /
    • 2006
  • To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

  • PDF

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

The Development of Ultra-precision Centerless Grinding Machine (초정밀 CNC 센터리스 연삭기 개발)

  • Cho S.J.;EBIHARA EBIHARA;Yoon J.S.;Cho C.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.557-558
    • /
    • 2006
  • In this study, the ultra precision centerless grinder for ferrule grinding was designed. As the good-qualified ferrule is required a precise and fine grinding, grinding machine for ferrule must have a high accuracy and a sufficient stiffness. The centerless grinder is composed of the high damping concrete bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. For a newly developed centerless grinder, hydrostatic system with high precision feeding and high stiffness was proposed.

  • PDF

Ultra-precision finishing characteristics of Coated Chrome steel (크롬 도금 강의 초정밀 연마 가공특성)

  • 배명일
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.97-101
    • /
    • 1998
  • In this study, The ultra-precision finishing system is applicable to all kind of the cylnderical workpiece products fast and easy. This system was applied to chrome coated steel to investigate the characteristic of grinding; (1) 3$mu extrm{m}$ of abrasive film is not use for grinding performance. (2) Grinding condition of coated chrome steel would set up differently, in 30~12${\mu}{\textrm}{m}$, in 9~5${\mu}{\textrm}{m}$. (3) The surface roughness of chrome coated steel was about Ra 0.0009${\mu}{\textrm}{m}$ in abrasive grain size 5${\mu}{\textrm}{m}$.

  • PDF

Structural Optimization and Performance Evaluation of Ultra Precision Co-axial Ferrule Grinding Machining System (초미세 고기능 동축가공 연삭 시스템의 구조 최적화 및 특성 평가)

  • Ahn K.J.;Lee H.J.;Kim G.J.;Kim G.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.559-560
    • /
    • 2006
  • Fiber optic connector, ferrule, is a device to connect and align fiber optics cable on fiber-optic communication system. In general $ZrO_2$ ceramic ferrule is manufactured by grinding process because the demands precision is very high. For the precision grinding machining, it is very important that structure of co-axial ferrule grinding system is optimized. In this paper, Structural analysis was performed to analyze bed and frame structure of co-axial grinding machine. Deformation and modal analysis for natural frequency was performed using ANSYS design space program to analyze structural characteristics. New improved model of bed and frame structure was proposed based on initial basic model. Therefore, we estimated the structural characteristics precision co-axial grinding machining system.

  • PDF

Characteristics of aspheric lens processing using ultra-precision moulds processing system (초정밀 금형가공기를 이용한 비구면 렌즈 가공특성 연구)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • The fabrication of precision optical components by deterministic CNC grinding is an area of great current interest. Replacement of the traditional, craftsman driven, optical fabrication process is essential to reduce costs and increase process flexibility and reliability. Moreover, CNC grinding is well suited to the fabrication of complex shapes such as aspheres, making it possible to design optical systems with fewer components and reduced weight. Current technology is capable of producing surfaces with less than 2 microns peak to valley error, 50 nm rms surface roughness, and less than 1 micron subsurface damage. Bound abrasive tools, in which the abrasive particles are fixed in a second (matrix) material, play an important part in achieving this performance. In this paper, the factors affecting the ultra-fine surface roughness and profile accuracy of machined surfaces of aspheric parts has been analyzed experimentally and theoretically and on ultra-precision aspheric grinding system and precise adjusting mechanism have been designed and manufactured. In the paper we report the results of experiments and modeling performed to examine the effects of machinability, occurring during grinding of optical surfaces, on the tool surface profile. Profiles of machined surface were measured by using SEM. In order to optimize grinding conditions of aspheric lens processing, we performed experiments by design of experiments.

  • PDF