• Title/Summary/Keyword: Ultra Precision Polishing

Search Result 72, Processing Time 0.043 seconds

A Study of Aluminum reflector manufacturing in diamond turning machine (초정밀가공기를 이용한 알루미늄반사경의 절삭특성)

  • 김건희;도철진;홍권희;유병주;원종호;김상석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1125-1128
    • /
    • 2001
  • A 110mm diameter aspheric metal secondary mirror for a test model of an earth observation satellite camera was fabricated by ultra-precision single point diamond turning(SPDT). Aluminum alloy for mirror substrates is known to be easily machinable, but not polishable due to its ductility. A harder material, Ni, is usually electrolessly coated on an Al substrate to increase the surface hardness for optical polishing. Aspheric metal secondary mirror without a conventional polishing process, the surface roughness of Ra=10nm, and the form error of Ra=λ/12(λ=632nm) has been required. The purpose of this research is to find the optimum machining conditions for reflector cutting of electroless-Ni coated Al alloy and apply the SPDT technique to the manufacturing of ultra precision optical components of metal aspheric reflector.

  • PDF

A Study on the Development and Performance Evaluations for a Self-diagnostication Ultra-precision Lens Polishing Machine (자기 진단형 초정밀 렌즈 폴리싱기의 개발 및 성능 평가에 관한 연구)

  • Park S.H.;Lim S.H.;Lee C.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.241-242
    • /
    • 2006
  • Spherical glass lenses are used in many optical industries. The curvature, eccentricity and height of a tool affect the surface roughness and curvature of lenses. The purpose of this study is the development and performance of a self-diagnostication ultra-precision lens polishing machine. In this paper, structure analysis is performed to reduce maximum displacement and to maintain outside the resonance region by CATIA V5. A spherical center setting gage is developed to increase accuracy of the manufactured lenses. The surface roughness, curvature and thickness of the manufactured lenses are measured and studied.

  • PDF

An Experimental Study on the Determination of Efficient Superfinishing Conditions Using Polishing Film (연마필름을 이용한 효율적인 수퍼피니싱 조건의 결정에 관한 실험적 연구)

  • Jung, Sung-Yong;Park, Ki-Beom;Jung, Yoon-Gyo;Jung, Soo-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.55-61
    • /
    • 2009
  • Recently, many studies are being conducted to realize high quality polishing technology, but because of high dependence on field experience and insufficient research for ultra-precision polishing technology, it is difficult to establish standardization of polishing conditions. The purpose of this study is to determine high-efficiency superfinishing conditions which are applicable in the field of machining. To achieve this, we have a developed a superfinishing device and conducted a series of polishing experiments for mechanical materials such as SM45C, Brass, Al7075, and Ti, from the perspective of oscillation speed, the rotational speed of the workpiece, contact roller hardness, contact pressure, and feed rate. From the experimental results, it was confirmed that the polishable superfinishing conditions range and efficient feed rate of polishing film can be determined.

Ultra Finishing by Magnet-abrasive Grinding for Internal-face of STS304 Pipe (STS304 파이프 내면의 초정밀 자기연마)

  • 김희남;윤영권;심재환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.947-952
    • /
    • 1997
  • The magnetic polishing is the useful method to finish using magnetic power of a magnet. The time hasn't been that long since the magnetic polishing method was introduced to korea as one of precision polishing techniques. However, the reasons for not being spreaded widely are the magnetic polishing method don't have mediocrity for machine, the efficiency of magnet-abrasive is confined as a bad polishing, and there are not many researchers in this field. The mechanism of this R&D is dealing with the dynamic state of magnet-abrasive. This paper deals with mediocritizing magnetic polishing device into regular lathe and this experiment was conducted in order to get a best surface roughness with low cost. Beside the subsidiary experiment was performed using the mixed magnet-abrasive with general alumina, barium. This paper introduced the main reason for difficulty using this method in industrial field. It needs more continues research on it. This paper contains the result of experiment to acquire the best surface roughness, not using the high-cost polishing material in processing. The average diameters of magnet-abrasive are the particles of 150 $\mu\textrm{m}$, 250 $\mu\textrm{m}$.

  • PDF

Micro Plishing using Electorheological fluid (ER유체를 이용한 미세 연마 가공)

  • 김욱배;이성재;박철우;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.850-853
    • /
    • 2000
  • It is well-known that Electro-rheological(ER) fluid is a material(suspension) which shows the dramatic change of rheological properties under an electric field. Using these properties, the concept that variable apparent viscosity of ER fluid could be applicable to the polishing for micro parts was introduced. It was investigated that how it works for polishing and how it affects ER effect when abrasives were mixed with an ER fluid. Therefore a few structures for polishing using ER fluid was suggested and evaluated by means of experiments. In this paper, fundamental mechanism and experimental results are described.

  • PDF

A Study on the Ultra-precision Machining of National Standard Electrode by the Magnetic-Electrolytic-Abrasive Polishing System (자기전해 가공시스템에 의한 국가 표준원기의 초정밀 표면 가공에 관한연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.137-142
    • /
    • 1996
  • Magnetic-electrolytic-abrasive polishing system(MEAPS) was developed for machining national standard electrode and its finishing characteristics was analyzed. The paper describes the operational principle of MEAP system by experimental results. The finishing characteristics and optimal finishing condition for national standard electrodes were experimented and analyzed. As a result, MEAPS can improve straightness as well as surface roughness.

  • PDF

Ultra-Precise Polishing of Mica Glass Ceramics Using MR Fluids and Nano Abrasives (MR fluid를 이용한 Mica Glass Ceramics의 초정밀 연마)

  • Beak, Si-Young;Song, Ki-Hyeok;Kim, Ki-Beom;Kim, Byung-Chan;Kang, Dong-Sung;Hong, Kwang-Pyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.85-90
    • /
    • 2017
  • Mica-glass ceramics has features such as micro-sized crystals, high strength, chemical resistance, semitransparent optical properties, etc. Due to its superior material properties, mica glass ceramics have increasing applications in dental and medical components, insulation boards, chemical devices, etc. In many applications, especially for dental and medical components, ultra-precise polishing is required. However, it is known to be a very difficult-to-grind material because of its high hardness and brittle properties. Thus, in this study, a newly developed ultra-precise polishing method is applied to obtain nano-level surface roughness of the mica glass ceramics using magnetorheological (MR) fluids and nano abrasives. Nano-sized ceria particles were used for the polishing of the mica glass ceramics. A series of experiments were performed under various polishing conditions, and the results were analyzed. A very fine surface roughness of Ra=6.127 nm could be obtained.

Machining of Micro Grooves using Hybrid Electrochemical Processes with Voltage Pulses (펄스 전기화학 복합가공기술을 적용한 미세 그루브 가공)

  • 이은상;박정우;문영훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.32-39
    • /
    • 2003
  • Pulse electrochemical machining process with high or low current density may produce a non-lustrous surface on workpiece surface. The usual polishing process to remove a black layer from the surface has been hand polish the part. But the milli-to-micro meter scale structure formed by the electrochemical machining process may be destroyed while polishing process. The application of ultra short voltage pulses based on the analysis of electrical double layer charging process allows high resolution electrochemical machining and polishing. This technique was based on the specific polarization resistance from the comparison of ideal and experimental potential variation during short voltage pulses.

A Study on Improving the Efficiency of Magnetic Abraslve Polishing for Die & Mold Surfaces (금형면의 자기연마가공 고효율에 관한 연구)

  • 이용철;안제정박;중천위웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.98-102
    • /
    • 1994
  • There are many difficulties in automatic polishing for die & mold surfaces. Even though the process has been studied in the past 15 years, it has not been achieved yet, but by the process of actual hand work of well-skilled workers. A new magentic assisted polishing process, which is one of the potential method for automation of surface finishing has been studied in the past 10 years by colleagues. The process has many merits, but on the other hand also has demerits, one being low efficiency of gridability by comparision with grinding wheel polish. Therefore, some attempts were tried to improve the grindability by adopting electropolishing, ultra-high speed milling, 5-axis controlled machine etc... most recently by collegues. This study also aims to improve the efficiency of polishing by introducing the easily-polished shape surface milling method equalizing the tool feed per tooth to the pick feed. This milling method was experimentally confirmed to have sufficient grindability to polish milled surface (with 10 .mu. mRmax surface roughness) into mirror surface (with 0.4 .mu. mRmax surface roughness).

  • PDF