• Title/Summary/Keyword: Ultimate failure

Search Result 987, Processing Time 0.03 seconds

Ultimate Strength Analysis of Reinforced Concrete Corbels Using Grid Softened Strut-Tie Model (격자 연화 스트럿-타이 모델 방법을 이용한 RC 코벨의 극한강도예측)

  • Yun Young Mook;Kim Byung Hun;Lee Won Seok;Shin Hyo Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.544-547
    • /
    • 2004
  • Predicting the failure modes of reinforced concrete corbels is difficult because the reinforced concrete corbels show the shapes of sudden shear failures at even slight deflection. For this reason, an exact analysis method is demanded highly. In this study, the validity of the grid softened strut-tie model method suggested for concrete member analysis was examined through the ultimate strength evaluation of the reinforced concrete corbels tested to failure. The evaluated ultimate strengths by the grid softened strut-tie model method were compared with those by the ACI 318-02 and the softened strut-tie model method.

  • PDF

Strength and strain enhancements of concrete columns confined with FRP sheets

  • Campione, G.;Miraglia, N.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.769-790
    • /
    • 2004
  • The compressive behavior up to failure of short concrete members reinforced with fiber reinforced plastic (FRP) is investigated. Rectangular cross-sections are analysed by means of a simplified elastic model, able also to explain stress-concentration. The model allows one to evaluate the equivalent uniform confining pressure in ultimate conditions referred to the effective confined cross-section and to the effective stresses in FRP along the sides of section; consequently, it makes it possible to determine ultimate strain and the related bearing capacity of the confined member corresponding to FRP failure. The effect of local reinforcements constitute by single strips applied at corners before the continuous wrapping and the effect of round corners are also considered. Analytical results are compared to experimental values available in the literature.

Ultimate behaviour and rotation capacity of stainless steel end-plate connections

  • Song, Yuchen;Uy, Brian;Li, Dongxu;Wang, Jia
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.569-590
    • /
    • 2022
  • This paper presents a combined experimental and numerical study on stainless steel end-plate connections, with an emphasis placed on their ultimate behaviour and rotation capacity. In the experimental phase, six connection specimens made of austenitic and lean duplex stainless steels are tested under monotonic loads. The tests are specifically designed to examine the close-to-failure behaviour of the connections at large deformations. It is observed that the rotation capacity is closely related to fractures of the stainless steel bolts and end-plates. In the numerical phase, an advanced finite element model suitable for fracture simulation is developed. The incorporated constitutive and fracture models are calibrated based on the material tests of stainless steel bolts and plates. The developed finite element model exhibits a satisfactory accuracy in predicting the close-to-failure behaviour of the tested connections. Finally, the moment resistance and rotation capacity of stainless steel end-plate connections are assessed based on the experimental tests and numerical analyses.

Failure Mechanism of Headed Reinforcement including Bond Failure (부착파괴를 고려한 Headed Reinforcement의 파괴메카니즘)

  • 박종욱;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.234-237
    • /
    • 2003
  • Previous researches about headed reinforcement have not been concerned about bond failure which is quite important is some cases. In this paper, failure mechanism including bond failure was presented in order to define the contribution of bond stress at the time failure occurs. Examined with design codes and test results, it is proved to be rational to consider the contribution of bond stress in determining the ultimate pull-out capacity of headed reinforcement. Direct adaptation of design code for anchor bolt without modification for the contribution of bond stress will lead to underestimate the capacity of headed reinforcement.

  • PDF

The Effects of Elbow Joint Angle on the Mechanical Properties of the Common Extensor Tendon of the Humeral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.582-591
    • /
    • 2004
  • The purpose of this study was to determine the effects of elbow joint angle on mechanical properties, as represented by ultimate load, failure strain and elastic modulus, of bone-tendon specimens of common extensor tendon of the humeral epicondyle. Eight pairs of specimens were equally divided into two groups of 8 each, which selected arbitrarily from left or right side of each pair, positioned at 45$^{\circ}$ and 90$^{\circ}$ of elbow flexion and subjected to tension to failure in the physiological direction of the common extensor tendon. For comparison of the differences in the failure and elastic modulus between tendon and the bone-junction, data for both were evaluated individually. Significant reduction in ultimate load of bone-tendon specimens was shown to occur at 45$^{\circ}$. The values obtained from the bone-tendon junctions with regard to the failure strain were significant higher than those from tendon in both loading directions, but the largest failure strain at the bone-tendon junction was found at 45$^{\circ}$. The elastic modulus was found to decrease significantly at the bone-tendon junction when the loading direction switched from 90$^{\circ}$ to 45$^{\circ}$. Histological observation, after mechanical tensile tests, in both loading directions showed that failure occurred at the interface between tendon and uncalcified fibrocartilage in the thinnest fibrocartilage zone of the bone-tendon junction. We concluded that differences in measured mechanical properties are a consequence of varying the loading direction of the tendon across the bone-tendon specimen.

Theoretical study of sleeved compression members considering the core protrusion

  • Zhang, Chenhui;Deng, Changgen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.783-792
    • /
    • 2018
  • This paper presents a detailed theoretical study of the sleeved compression members based on a mechanical model. In the mechanical model, the core protrusion above sleeve and the contact force between the core and sleeve are specially taken into account. Via the theoretical analyses, load-displacement relationships of the sleeved compression members are obtained and verified by the experimental results. On the basis of the core moment distribution changing with the increase of the applied axial load, failure mechanism of the sleeved compression members is assumed and proved to be consistent with the experimental results in terms of the failure modes and the ultimate bearing capacities. A parametric study is conducted to quantify how essential factors including the core protrusion length above sleeve, stiffness ratio of the core to sleeve, core slenderness ratio and gap between the core and sleeve affect the mechanical behaviors of the sleeved compression members, and it is concluded that the constrained effect of the sleeve is overestimated neglecting the core protrusion; the improvement of ultimate bearing capacity for the sleeved compression member is considered to be decreasing with the decrease of the core slenderness ratio and for the sleeved compression member with core of small slenderness ratio, small gap and small stiffness ratio are preferred to obtain larger ultimate bearing capacity and stiffness.

Concrete-filled rectangular hollow section X joint with Perfobond Leister rib structural performance study: Ultimate and fatigue experimental Investigation

  • Liu, Yongjian;Xiong, Zhihua;Feng, Yuncheng;Jiang, Lei
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.455-465
    • /
    • 2017
  • This paper presents a series of ultimate and fatigue experimental investigation on concrete-filled rectangular hollow section (CRHS) X joints with Perfobond Leister rib (PBR) under tension. A total of 15 specimens were fabricated, in which 12 specimens were tested under ultimate tension and 3 specimens were investigated in fatigue test. Different parameters including PBR stiffening, brace-to-chord ratio (${\beta}$) and inclined angle (${\theta}$) were considered in the test. Each joint was tested to failure under tension load. Obtained from test result, PBR was found to improve the tension strength and fatigue durability of CRHS joint substantially. Concrete dowel consisted by PBR and concrete inside the chord stiffened the joint, which leaded to a combination failure mode of punching shear and chord plastification of CRHS joint under tension. Finite element analysis validated the compound failure mode. Stress concentration on typical spot of CRHS joint was mitigated by PBR which was observed from fatigue test. Initial fatigue crack presented in CRHS joint with PBR also differentiated with the counterpart without PBR.

Behaviors of novel sandwich composite beams with normal weight concrete

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.599-615
    • /
    • 2021
  • The ultimate strength behaviour of sandwich composite beams with J-hooks and normal weight concrete (SCSSBJNs) are studied through two-point loading tests on ten full-scale SCSSBJNs. The test results show that the SCSSBJN with different parameters under two-point loads exhibits three types of failure modes, i.e., flexure, shear, and combined shear and flexure mode. SCSSBJN failed in different failure modes exhibits different load-deflection behaviours, and the main difference of these three types of behaviours exist in their last working stages. The influences of thickness of steel faceplate, shear span ratio, concrete core strength, and spacing of J-hooks on structural behaviours of SCSSBJN are discussed and analysed. These test results show that the failure mode of SCSSBJN was sensitive to the thickness of steel faceplate, shear span ratio, and concrete core strength. Theoretical models are developed to estimate the cracking, yielding, and ultimate bending resistance of SCSSBJN as well as its transverse cross-sectional shear resistance. The validations of predictions by these theoretical models proved that they are capable of estimating strengths of novel SCSSBJNs.

Ultimate behavior of long-span steel arch bridges

  • Cheng, Jin;Jiang, Jian-Jing;Xiao, Ru-Cheng;Xiang, Hai-Fan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.331-343
    • /
    • 2002
  • Because of the increasing span of arch bridges, ultimate capacity analysis recently becomes more focused both on design and construction. This paper investigates the static and ultimate behavior of a long-span steel arch bridge up to failure and evaluates the overall safety of the bridge. The example bridge is a long-span steel arch bridge with a 550 m-long central span under construction in Shanghai, China. This will be the longest central span of any arch bridge in the world. Ultimate behavior of the example bridge is investigated using three methods. Comparisons of the accuracy and reliability of the three methods are given. The effects of material nonlinearity of individual bridge element and distribution pattern of live load and initial lateral deflection of main arch ribs as well as yield stresses of material and changes of temperature on the ultimate load-carrying capacity of the bridge have been studied. The results show that the distribution pattern of live load and yield stresses of material have important effects on bridge behavior. The critical load analyses based on the linear buckling method and geometrically nonlinear buckling method considerably overestimate the load-carrying capacity of the bridge. The ultimate load-carrying capacity analysis and overall safety evaluation of a long-span steel arch bridge should be based on the geometrically and materially nonlinear buckling method. Finally, the in-plane failure mechanism of long-span steel arch bridges is explained by tracing the spread of plastic zones.

First Diagonal Cracking and Ultimate Shear of I-Shaped Reinforced Girders of Ultra High Performance Fiber Reinforced Concrete without Stirrup

  • Wu, Xiangguo;Han, Sang-Mook
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • The first diagonal cracking and ultimate shear load of reinforced girder made of ultra high performance fiber reinforced concrete (UHPFRC) were investigated in this paper. Eleven girders were tested in which eight girders failed in shear. A simplified formulation for the first diagonal cracking load was proposed. An analytical model to predict the ultimate shear load was formulated based on the two bounds theory. A fiber reinforcing parameter was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equation can be used for the first cracking status analysis, while the proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which can also be utilized for numerical limit analysis of reinforced UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.