• 제목/요약/키워드: Ultimate Tensile Strength

검색결과 494건 처리시간 0.031초

탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발 (Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets)

  • 김성도;김성수
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향 (Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship)

  • 김도균;박대겸;서정관;백점기;김봉주
    • 대한금속재료학회지
    • /
    • 제50권6호
    • /
    • pp.427-432
    • /
    • 2012
  • This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.

티타늄과 금합금의 레이저 용접부의 인장강도 (TENSILE STRENGTH OF LASER WELDED-TITANIUM AND GOLD ALLOYS)

  • 송윤관;송광엽;하일수
    • 대한치과보철학회지
    • /
    • 제38권2호
    • /
    • pp.200-213
    • /
    • 2000
  • Lasers have given dentistry a new rapid, economic, and accurate technique for metal joining. Although laser welding has been recommended as an accurate technique, there are some limitations with this technique. For example, the two joining surfaces must have a tight-fitting contact, which may be difficult to achieve in some situations. The tensile samples used for this study were made from a custom-made pure titanium and type III gold alloy plates. 27 of 33 specimens were sectioned perpendicular to their long axis with a carborundum disk and water coolant. Six specimens remained and served as the control group. A group of 6 specimens was posed as butt joints in custom parallel positioning device with a feeler gauge at each of three gaps : 0.00, 0.25. and 0.50mm. All specimens were then machined to produce a uniform cross-sectional dimension, none of the specimens was subjected to any subsequent form of heat treatment. Scanning electron microscopy was performed on representative tested specimens at fractured surfaces in both the parent metal and the weld. Vickers hardness was measured at the center of the welds with a micropenetrometer using a force of 300gm for 15 seconds. Measurement was made at approximately $200{\mu}m\;and\;500{\mu}m$ deep from each surface. One-way analysis of variance (ANOVA) and Scheffe's test was calculated to detect differences between groups. The purpose of this study is to compare the strength and properties of the joint achieved at various butt Joint gaps by the laser welding of type III gold alloy and pure titanium tensile specimens in an argon atmosphere. The results of this study were as follows : 1. When indexing and welding pure titanium, there was no decrease in ultimate tensile strength as compared with the unsectioned alloys for indexing gaps of 0.00 to 0.50mm, although with increasing gap size may come increased distortion (p>0.05). 2. When indexing and welding type III gold alloy, there were significant differences in ultimate tensile strength among groups with weld gaps of 0.00mm, 0.25 and 0.50mm, and the control group. Group with butt contact without weld gap demonstrated a significant higher ultimate tensile strength than groups with weld gaps of 0.25 and 0.50mm (p<0.05). 3. When indexing and welding the different metal combination of type III gold alloy and pure titanium, there were significant differences in ultimate tensile strength between groups with weld gaps of 0.00, 0.25, and 0.50mm. However, the mechanical properties of the welded joint would become too brittle to be acceptable clinically (p<0.05). 4. The presence of large pores in the laser welded joint appears to be the most important factor in controlling the tensile strength of the weld in both pure titanium and type III gold alloy.

  • PDF

온간, 열간 판재 성형을 위한 AZ31B의 기계적 성질 평가 (Evaluation of Mechanical Properties of AZ31B for Sheet Metal Forming at Warm and High Temperature)

  • 추동균;김우영;이준희;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.256-259
    • /
    • 2004
  • In the present study, AZ31B sheets has a bad formability in room temperature, but the formability is improved significantly as increasing the temperature because of rolled magnesium alloy sheet has a hexagonal closed packed structure (HCP) and a plastic anisotropy. In this paper, after tensile test in various temperatures, strain rate, show the tensile mechanical properties, yield and ultimate strength, K-value, work hardening exponent(n), strain rate sensitivity(m). As temperature increased, yield, ultimate strength and K-value, work hardening exponent(n) are decreased but strain rate sensitivity(m) is increased. As cross-head-speed increased, yield, ultimate strength and K-value, work hardening exponent(n) are increased. And according to the temperature, how change the plastic anisotropy factor R. In addition, we observed how temperatures and cross-head-speed effect on microstructure.

  • PDF

Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam

  • Zhu, Wenjun;Francois, Raoul
    • Advances in concrete construction
    • /
    • 제1권2호
    • /
    • pp.121-136
    • /
    • 2013
  • Tension tests were carried out to investigate the effect of the corrosion pattern on the ductility of tension bars extracted from a 26-year-old corroded reinforced concrete beam. The tensile behavior of corroded bars with different corrosion patterns was examined carefully, as were two non-corroded bars extracted from a 26-year-old control beam. The results show that corrosion leads to an increase in the ratio of the ultimate strength over the yield strength, but reduces the ultimate strain at maximum force of the reinforcement. Both the corrosion pattern and the corrosion intensity play an important role in the ductile properties. The asymmetrical distribution of the corrosion around the surface is a decisive factor, which can influence the ultimate strain at maximum force more seriously.

Mechanical properties of steel-CFRP composite specimen under uniaxial tension

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • 제15권6호
    • /
    • pp.659-677
    • /
    • 2013
  • This paper introduces new specimens of Steel-Carbon Fibre Reinforced Polymer composite developed in accordance with standard test method and definition for mechanical testing of steel (ASTM-A370). The main purpose of this research is to study the behaviour of steel-CFRP composite specimen under uniaxial tension to use it in beams in lieu of traditional steel bar reinforcement. Eighteen specimens were prepared and divided into six groups, depending upon the number of the layers of CFRP. Uniaxial tensile tests were conducted to determine yield strength and ultimate strength of specimens. Test results showed that the stress-strain curve of the composite specimen was bilinear prior to the fracture of CFRP laminate. The tested composite specimens displayed a large difference in strength with remarkable ductility. The ultimate load for Steel-Carbon Fibre Reinforced Polymer composite specimens was found using the model proposed by Wu et al. (2010) and nonlinear FE analysis. The ultimate loads obtained from FE analysis are found to be in good agreement with experimental ones. However, ultimate loads obtained applying Wu model are significantly different from experimental/FE ones. This suggested modification of Wu model. Modified Wu's model which gives a better estimate for the ultimate load of Steel-Carbon Fibre Reinforced Polymer (SCFRP) composite specimen is presented in this paper.

Cu/Polyamide 혼합분말의 선택적 레이저 소결 (Selective Laser Sintering of Cu/Polyamide Mixed Powder)

  • 박흥일;이길근
    • 한국분말재료학회지
    • /
    • 제8권4호
    • /
    • pp.239-244
    • /
    • 2001
  • To investigate the effect of process parameters on selective laser sintering of Cu/polyamide mixed powder, Cu/polyamide mixed powder was sintered by selective laser with changing laser power and scanning speed. The properties of sintered body were evaluated by measuring the density and tensile strength, and analysis of XRD, FT-Raman and microstructure. With an increase in the laser power, the density and ultimate tensile strength of sintered Cu/polyamide body increase and then decrease. The maximum values of the density and ultimate tensile strength were decreased with increasing laser scanning speed. These changes were concerned with the difference of irradiation energy of laser into the powder layer. It was considered that the change of the mechanical property of the sintered body with irradiation energy of laser is due to the changes of amount of copper particle and property of polyamide.

  • PDF

Fatigue Strength Evaluation of the Clinch Joints of a Cold Rolled Steel Sheet

  • Kim, Ho-Kyung
    • International Journal of Railway
    • /
    • 제2권4호
    • /
    • pp.131-138
    • /
    • 2009
  • Static tensile and fatigue tests were conducted using tensile-shear specimens to evaluate the fatigue strength of a SPCC sheet clinch joint. The maximum tensile strength of the specimen produced at the optimal punching force was 1750 kN. The fatigue endurance limit (=760 N) approached 43% of the maximum tensile load (=1750 N) at a load ratio of 0.1, suggesting that the fatigue limit is approximately half of the value of the maximum tensile strength. The FEM analysis showed that at the fatigue endurance limit, the maximum von-Mises stress of 373 MPa is very close to the ultimate tensile strength of the SPCC sheet (=382 MPa).

  • PDF

Experimental comparability between steam and normal curing methods on tensile behavior of RPC

  • Guo, Min;Gao, Ri
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.347-356
    • /
    • 2021
  • To address the limitation of the commonly used steam curing of reactive powder concrete (SC-RPC) in engineering, a preparation technology of normal curing reactive powder concrete (NC-RPC) is proposed. In this study, an experimental comparative research on the mechanical properties of NC-RPC and SC-RPC under uniaxial tension is conducted. Under the premise of giving full play to the ultra-high performance of RPC, the paper tries to explore whether normal curing can replace steam curing. The results show that various mechanical indexes of NC-RPC (e.g., tensile strength, ultimate tensile strain, elastic modulus and deformation performance) could basically reach the mechanical index values in steam curing at 28d age, some performance is even better at a longer age. So it affirms the feasibility of normal curing. In this paper, the influence of normal curing age on the tensile properties of RPC is discussed, and the relationship between each index and age is introduced in detail. Based on the experimental data, the tensile mechanism of RPC is analyzed theoretically, and two kinds of tensile constitutive models for RPC are proposed, one is curvilinear model, and another one is polygonal line model. The validity of the two models is further verified by the test results of others.