• 제목/요약/키워드: Ultimate Load

Search Result 1,468, Processing Time 0.021 seconds

Experiments on Second -Order Behavior of High Strength Concrete Columns (고강도 콘크리트 기둥의 2계 거동에 관한 실험적 연구)

  • 김진근;양주경
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.167-172
    • /
    • 1992
  • To analyze the effects compressive strength of concrete and longitudinal steel ratio on second-order moment of columns, 30tied rein reinforced concrete columns with hinged ends were tested. The 80mm square cross section was used and the amount of eccentricity was 24mm. The compressive strengths of column specimens with slenderness ratios of 10, 60, and 100were 250, 648 and 880kg/$\textrm{cm}^2$, and the longitudinal steel ratios were 1.98%(4-D6) and 3.95%(8-D6). The ratio of ultimate load capacity to that of short column with the same eccentricity (Pu/Pn) was much decreased at high slenderness ratio with increasing the compressive strength of concrete. And the lateral displacement of slender column at the ultimate load was decreased as the strength was increased. These are due to that at high slenderness ratio the load capacity and behavior of column are affected by flexural rigidity. And, it was also found that with increasing steel ratio, the value of Pu/Pn and the lateral displacement at the ultimate load were larger for the same slenderness ratio.

  • PDF

Creep of Plate Anchors Embedded in Bentonite (Bentonite에 근입된 앵커의 Creep 특성)

  • Shin, B.W.;Lee, J.D.;Shin, J.H.;Lee, B.J.
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.3-8
    • /
    • 1995
  • Anchors find their use in providing tie-back resistance for submerged footings, transmission towers, tunnels and ocean structures. Laboratory model teats were performed for the short-term net ultimate uplift capacity of a circular anchors with respect to various embedment depths and moisture content in saturated bentonite. The tests have been conducted with the anchor at two different moisture contents. Based an the model test results, empirical relationships between the net load, rate of strain, and time have been developed. Test results are as follows. 1) In creep tests for load versus ultimate uplift capacity, the displacement of plate anchors rapidly increases during the primary stage but thereafter becomes constant over a period of time. 2) Displacement increased with the increase of the sustain load and embedded ratio in soil. 3) If the load is less than or equal to 75% of the short-term ultimate uplift capacity, a complete pullout does not occur due to creep.

  • PDF

Compressive Ultimate Strength Analysis of Plates with Initial Imperfections (초기결함(初期缺陷)을 갖는 평판(平板)의 압축최종강도해석(壓縮最終强度解析))

  • J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 1985
  • In ship's structure, deck and bottom plate are main strength member subjected to the inplane load due to longitudinal bending, i.e. tensile and/or compressive load. The deck and bottom plate are subdivided into many plate members by stiffeners and girders longitudinally and transversely. Since the plate members are thin, it is likely to be collapsed under compressive load, and when we consider the local strength of deck and bottom, the plate members play an important role in the longitudinal strength. Therefore the precise analysis of their compressive ultimate strength is required for the optimal design of ship's structures. In this paper, the modified analytical method using the incremental form of principle of virtual displacement is introduced to determine the compressive ultimate load of plate members. The results by the present method is satisfactory, and the present method is more effective and economical than the finite element method.

  • PDF

Ultimate Strenth Behaviour for Perforated Stiffened Panels under Longitudinal Compressive Load (종방향 압축하중을 받는 선체 유공보강판의 최종강도 거동에 관한 연구)

  • Ko Jae-Yong;Park Joo-Shin;Lee Kye-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.592-600
    • /
    • 2005
  • Ship have cutout inner bottom and girder and floor etc. Ship's structure is used much, and structure strength must be situated, but establish new concept when high stress interacts sometimes fatally the area. There is no big problem usually by aim of weight reduction, a person and change of freight, piping etc.. Because cutout's existence grow up in this place, and elastic buckling strength by load causes large effect in ultimate strength. Therefore, stiffened perforated plate considering buckling strength and ultimate strength is one of important design criteria which must examine when decide structural concept at initial design. Therefore, md, reasonable buckling strength about stiffened perforated plate need to ultimate strength limited design . Calculated ultimate strength varied several web height and cutout's dimension, and thickness in this investigated data. Used program(ANSYS) applied F.E.A code based on finite element method

  • PDF

A Comparative Study on Field Tests for Driven Pile in Static Load Tests (말뚝의 정재하시험을 통한 현장시험 결과 분석)

  • Chun, Byung-Sik;Youn, Hwan-Ho;Youn, Byung-Tae;Kim, Young-Hun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1117-1124
    • /
    • 2008
  • In This paper, load-settlement curves that obtained from 11 sites were analyzed. At all tests, the load is applied until apparent failure is observed. The validity of the ultimate and yield load estimation method and load calculated from the settlement criterion was investigated through comparison with the measured data. The result indicated that B. Hansen 80% criterion and Stability Plot in ultimate loading decision law almost have been regared as same by comparing measured date and ultimate bearing capacity decided in depending yield loading decision law from 13% to 46% difference have taeyaeen came out when measured data and Davisson was compared, and S-log t from 5% to 41% log P-log S from 14% to 50% difference have been came out. When Settlement standard and measured data was compared difference had been came out about 3% in total settlement 0.1D criterion and from 12% to 35% difference had been came out in net settlement.

  • PDF

Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil

  • Kaur, Arshdeep;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2016
  • A total of 104 laboratory model tests on a square footing subjected to eccentrically inclined loads supported by sand reinforced with randomly distributed polypropylene fibers were conducted in order to compare the results with those obtained from unreinforced sand and with each other. For conducting the model tests, uniform sand was compacted in a test box at one particular relative density of compaction. The effect of percentage of reinforcement used, thickness of the reinforced layer, angle of inclination of load to vertical and eccentricity of load applied on various prominent factors such as ultimate load, vertical settlement, horizontal deformation and tilt were investigated. An improvement in ultimate load, vertical settlement, horizontal deformation and tilt of foundation was observed with an increase in the percentage of fibers used and thickness of reinforced sand layer under different inclinations and eccentricities of load. A statistical model using non-linear regression analysis based on present experimental data for predicting the vertical settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) of square footing on reinforced sand at any load applied was done where the dependent variable was predicted settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) respectively.

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.

Mechanical properties of steel-CFRP composite specimen under uniaxial tension

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.659-677
    • /
    • 2013
  • This paper introduces new specimens of Steel-Carbon Fibre Reinforced Polymer composite developed in accordance with standard test method and definition for mechanical testing of steel (ASTM-A370). The main purpose of this research is to study the behaviour of steel-CFRP composite specimen under uniaxial tension to use it in beams in lieu of traditional steel bar reinforcement. Eighteen specimens were prepared and divided into six groups, depending upon the number of the layers of CFRP. Uniaxial tensile tests were conducted to determine yield strength and ultimate strength of specimens. Test results showed that the stress-strain curve of the composite specimen was bilinear prior to the fracture of CFRP laminate. The tested composite specimens displayed a large difference in strength with remarkable ductility. The ultimate load for Steel-Carbon Fibre Reinforced Polymer composite specimens was found using the model proposed by Wu et al. (2010) and nonlinear FE analysis. The ultimate loads obtained from FE analysis are found to be in good agreement with experimental ones. However, ultimate loads obtained applying Wu model are significantly different from experimental/FE ones. This suggested modification of Wu model. Modified Wu's model which gives a better estimate for the ultimate load of Steel-Carbon Fibre Reinforced Polymer (SCFRP) composite specimen is presented in this paper.

A Study on the Load Carrying Capacity and Energy Absorption Capacity of the Concrete Filled Steel Tube Column (콘크리트충전 강관기둥의 내력 및 변형 능력에 관한 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.121-128
    • /
    • 1997
  • It has been reported by the existing papers that the ultimate load capacity and energy absorption capacity of the CFST column are considerably higher than those resulting from a simple addition of the capacities of the concrete and the steel tube. It is normally believed that the confined effect for the infilled concrete due to the hoop tension of steel at the parameter of cross sections can remarkably improve the ductility and energy absorption capacities of the CFST columns. This paper provides the results of a study on the load-carrying capacities and energy absorption capacities of the CFST columns, a numerical analysis method, i. e. N-M interaction curves and Moment curvature relationships. The numerical approaches are verified by comparing with the existing test results and the circular and square steel tube sections are selected to clarify the amount of confinement effects to improve the ultimate deformable capacity(a ultimate strain value) of the infilled concrete. Then, an adequate value of the ultimate strain of the infilled concrete and an equation of the ultimate capacity of the CFST column are suggested.

  • PDF

Numerical investigation on the behavior of SHS steel frames strengthened using CFRP

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.561-568
    • /
    • 2017
  • Steel frames are widely used in steel structures. Exiting steel structures may be needed to strengthen for various reasons. Carbon Fiber Reinforced Polymers (CFRP) is one of the materials that are used to strengthen steel structures. Most studies on strengthening steel structures have been done on beams and steel columns. No independent study, to the researcher's knowledge, has studied the effect of CFRP strengthening on steel frames. This study explored the use of CFRP composite on retrofitting square hollow section (SHS) steel frames, using numerical investigations. Ten Finite Element (FE) models, which were strengthened with CFRP sheets, were analyzed under different coverage length, number of layers, and location of CFRP composite. One FE model without strengthening was analyzed as a control FE model to determine the increase of the ultimate load in the strengthened steel frames. ANSYS software was used to analyze the SHS steel frames. The results showed that the coverage length and the number of layers of CFRP composite have a significant effect on increasing the ultimate load of the SHS steel frames. The results also showed that the location of CFRP composite had no similar effect on increasing the ultimate load and the amount of mid span deflection of the SHS steel frames.