• 제목/요약/키워드: Ulchin 1&2 Nuclear Power Plant Cavity

검색결과 2건 처리시간 0.022초

A Study on Effect of Capture Volume in a Cavity on Direct Containment Heating Phenomena

  • Chung, C.Y.;Kim, M.H.;Lee, H.Y.;Kim, P.S.
    • Nuclear Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.290-298
    • /
    • 1996
  • Direct Containment Heating, DCH, is supposed to occur during a core melt-down accident if the primary system pressure is still high at the time of vessel breach in a Nuclear Power Plant (NPP). In this case, DCH is considered to be one of very important severe phenomena during postulated severe accident scenario because of the fast heat transfer rate to atmosphere and the sharp pressure increase in a containment. To reduce the effect of this DCH phenomena, the capture volume wes designed at Ulchin NPP units 3 and 4. But, the effect of this has not been studied extensively. This work consists of experimental and numerical analyses of the effects of capture volume in the cavity on DCH phenomena. The experimental model is a 1/30 scaled-down model of Ulchin NPP units 3 and 4. We used three types of capture volumes to investigate the effect of size. Numerical analysis using CONTAIN 1.2 is performed with the correlation for the dispersed fraction of molten corium from the cavity into the containment derived from the experimental data to examine the effect of capture volume on DCH phenomena in full scale of Ulchin NPP units 3 and 4.

  • PDF

원자로 가상사고시(노심) 용융물 고압 분출 모의 실험 연구 (Simulated Experiments on High Pressure Melt Ejection in the Reactor Cavity During Severe Accident)

  • 정한원;김도형;이규정;김상백;박래준;김희동
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1447-1456
    • /
    • 2000
  • Simulated experiments of high pressure melt ejection(HPME) are performed to measure the released fraction of corium simulant from the French type PWR cavity. The experiments are carried out on a 1/20th linear scaled model of the Ulchin 1&2 cavity. Water or woods metal and nitrogen is used as simulant of molten corium and steam, respectively. Experimental parameters are water mass, annulus area and breach size. It is shown that only breach size effects is very important while the mass and the annulus area do not affect the released fraction. It is found that the liquid film transport is much more dominant mechanism than the entrainment droplet transport, especially in linear scale down simulated HPME experiment.