• Title/Summary/Keyword: Ubiquitous Transportation System

Search Result 72, Processing Time 0.024 seconds

Traffic Flow Management under Ubiquitous Transportation System Environments (유비쿼터스 교통 환경하에서 교통류 관리구상)

  • Park, Eun-Mi
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • It is crucial in traffic flow management to maintain productivity and the traffic stability at the same time especially under congested traffic conditions. This issue has not been explicitly addressed under the intelligent transportation system environments. However, the ubiquitous transportation system environments make it possible to collect the data for each vehicle's position and velocity and to perform more sophisticated traffic flow management at individual vehicle or platoon level through V2V and V2I communications. In this paper, a preventive traffic flow management scheme is proposed, in which the objective is to maintain traffic flow stability while the productivity of the system is not decreased. The management scheme is proposed based on Greenshield's model because it is simple and easy to handle. It is considered that further research should be performed to evaluate the various traffic flow models.

Packet Transmission Scheme for Collecting Traffic Information based on Vehicle Speed in u-TSN system (u-TSN 시스템의 교통정보 수집을 위한 차량 이동속도에 따른 패킷 전송 방안)

  • Bae, Jeong-Kyu;Han, Dong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.35-41
    • /
    • 2010
  • The ubiquitous-transportation sensor network (u-TSN) system is a next generation transportation system that provides traffic information through analysis and processing periodic information from vehicles. In this paper, we propose the adequate transmission scheme from vehicles for collecting vehicular information. The conventional scheme is transmitting each vehicle information every 0.1s. A variable transmission period scheme is proposed in this paper according to vehicle speed. The proposed and conventional schemes are compared with computer simulations.

Developing a Freeway Flow Management Scheme Under Ubiquitous System Environments (유비쿼터스 환경에서의 연속류 적정속도 관리 기술 개발)

  • Park, Eun-Mi;Seo, Ui-Hyeon;Go, Myeong-Seok;O, Hyeon-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.4
    • /
    • pp.167-175
    • /
    • 2010
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at the individual vehicle or platoon level through vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication. It is necessary to develop a traffic flow management scheme to take advantage of the ubiquitous transportation system environments. This paper proposes an algorithm to advise the optimal speed for each vehicle according to the traffic flow condition. The algorithm aims to stabilize the traffic flow by advising the equilibrium speed to the vehicles speeding or crawling under freely flowing condition. And it aims to prevent or at least alleviate the shockwave propagation by advising the optimal speed that should dampen the speed drop under critical flow conditions. This paper builds a simulation testbed and performs some simulation experiments for the proposed algorithm. The proposed algorithm shows the expected results in terms of travel time reduction and congestion alleviation.

Bird's-Eye View Service under Ubiquitous Transportation Sensor Network Environments (Ubiquitous Transportation Sensor Network에서 Bird's-Eye View 서비스)

  • Kim, Joohwan;Nam, Doohee;Baek, Sungjoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • A bird's-eye view is an elevated view of an object from above, with a perspective as though the observer were a bird, often used in the making of blueprints, floor plans and maps. It can be used under severe weather conditions when visibility is poor. Under low visibility environments, drivers can communicate each other using V2V communication to get each vehicle's status to prevent collision and other accidents. Ubiquitous transportation sensor networks(u-TSN) and its application are emerging rapidly as an exciting new paradigm to provide reliable and comfortable transportatione services. The ever-growing u-TSN and its application will provide an intelligent and ubiquitous communication and network technology for traffic safety area.

Processing the Data from the uTSN of Uninterrupted Traffic Flow (연속류 uTSN 수집 데이터 가공 방안)

  • Park, Eun-Mi;Suh, Euy-Hyun
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.57-69
    • /
    • 2010
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at individual vehicle or platoon level through V2V and V2I communication. It is necessary to develop a new data processing methodology to take advantage of the ubiquitous transportation system environments. This paper proposed to build 3-dimension data profiles to maintain the detailed traffic flow information contained in the individual vehicles' data and at the same time to keep the profiles from the meaningless fluctuations. Also methods to build the platoon profile and the shock wave speed profile are proposed, which have not been possible under ITS(Intelligent Transportation System) environments.

Deploying Ubiquitous Traffic Flow Control System under the ITS Environments (ITS 환경에 유비쿼터스 교통관리시스템 접목 가능성 연구)

  • Park, Eun-Mi;Oh, Hyun-Sun;Suh, Euy-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.5
    • /
    • pp.36-46
    • /
    • 2011
  • It is thought traffic flow management under the ubiquitous transportation system has great potential in view of individual vehicle data availability and V2V, V2I two-way communication environments. However, it is expected that deployment of the ubiquitous transportation system takes some time. Therefore it is necessary to evaluate the feasibility of the algorithm under the ITS environment. The speed management algorithm proposed in the previous research is revised to fit for the ITS data collection and information provision environment. And the feasibility of the algorithm is evaluated through simulation experiments.

Evaluating of Traffic Flow Distributed Control Strategy on u-TSN(ubiquitous-Transportation Sensor Network) (V2I 통신을 이용한 교통류 분산제어 전략 수립 및 평가)

  • Kim, Won-Kyu;Lee, Min-Hee;Kang, Kyung-Won;Kim, Byung-Jong;Kang, Yeon-Su;Oh, Cheol;Kim, Song-Ju
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.3
    • /
    • pp.122-131
    • /
    • 2009
  • Ubiquitous-Transportation sensor network is able to realize a vehicle ad-hoc network. Since there are some problems in an existing ITS system, the new technology and traffic information strategies are requirements in this advanced system, u-TSN. The purposes of this paper is to introduce the components on u-TSN system, establish new traffic strategies for this system, and then evaluate these strategies by making a comparative study of ITS and using micro traffic simulator, AIMSUN. The strategy evaluated by AIMSUN is position-based multicast strategy which provides traffic information to vehicles using V2I (vehicle to Infrastructure) communication. This paper focuses on the providing real-time route guidance information when congestion is occurred by the incidents. This study estimates total travel time on each route by API modules. Result from simulation experiments suggests that position-based multicast strategy can achieve more optimal network performance and increased driver satisfaction since the total accumulated travel times of both the major road and the total system on position-based multicast strategy are less than those on VMS.

  • PDF

A study on the Planning of Ubiquitous System for Instrumentation management of Retaining wall in Building Construction (건축공사 흙막이 계측관리를 위한 유비쿼터스 시스템 구축 방안에 관한 연구)

  • Lee Ung-Kyun;Jo Ho-Kyoo;Kim Gwang-Hee;Kang Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.67-70
    • /
    • 2004
  • The ubiquitous computing environment is widely expanded in almost all industries such as transportation. physical distribution, manufacturing, communication, tourist industry, financial business, and so on. But the construction industry is not well applied yet. Thus this study investigate the ubiquitous computing environment and propose a way for applying this technology to the construction industry. To achieve this aim, this study consider about a instrumentation management of retaining wall system in earthmoving operations, and suggest the ubiquitous system configuration to measure the variance of retaining wall. Through this system, the efficiency of the instrumentation management of retaining wall will be improved.

  • PDF

A Bridge Monitoring System on Web-GIS Linking with UFID and BMS

  • Pyeon, Mu-Wook;Koo, Jee-Hee;Nam, Sang-Gwan;Park, Jae-Sun
    • Spatial Information Research
    • /
    • v.14 no.4 s.39
    • /
    • pp.421-431
    • /
    • 2006
  • Nowadays, the importance of safety monitoring for facilities is increasing. Therefore, the introduction of ubiquitous technology to replace the existing manually-operated methods is required. In this study, a web-based GIS system that provides monitoring information of bridges in real-time for the application of a bridge management system through the use of ubiquitous technology is constructed. Particular attention is given to the effective interconnection of bridge monitoring information and bridge management system and, through a ubiquitous environment, how to connect this with the UFID and the GIS-based bridge management system (BMS) operated by the Ministry of Construction and Transportation. In addition, data expression methods are also suggested that state the detailed locations and attributes of structures in bridge management by using GIS.

  • PDF