• Title/Summary/Keyword: UWB monopole antenna

Search Result 56, Processing Time 0.02 seconds

Characterization and Analysis of UWB Antennas in Time Domain (시간 영역에서의 초광대역 안테나 특성 해석)

  • Song Jong-Hwa;Park Young-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.3 s.106
    • /
    • pp.287-294
    • /
    • 2006
  • In the paper, characterization and analysis of UWB(Ultra Wide Band) antennas in time domain are described. The impulse propagation channel including UWB antennas is proposed for the analysis in time domain. Using the proposed propagation channel, the technique of obtaining impulse response of UWB antenna is proposed. Also, ringing, peak value of the impulse response, and the width of the impulse response are introduced as parameters for characterizing a UWB antenna in time domain. A modified UWB conical monopole antenna, a UWB TEM horn antenna, and a UWB stepped fat monopole antenna were fabricated. From the measurement of reflection coefficients, three antennas had bandwidth more than 3 GHz. The impulse responses of the antennas were measured in an anechoic chamber. The results showed that the TEM horn with highest gain has the highest peak amplitude and the stepped fat monopole antenna with narrowest bandwidth for reflection coeffcient had the widest width of the impulse response. Also, ringing in the stepped fat monopole antennas and the UWB conical monopole antenna were observed.

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • 차상진;이현진;임영석
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.125-130
    • /
    • 2004
  • Various antennas have been developed to be used for UWB systems, However, Simultaneously meet omni-directional and low-VSWR requirements, essential for some applications such as UWB channel sounding. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover m frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. Antenna radiation pattern is omnidirectional at 3.5GHz - 10GHz. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The proposed antenna easy to construct UWB system.

Analysis of Monopole Antenna Equipped with a Reflector for UWB Systems (UWB 시스템용 반사판을 갖는 모노폴 안테나 분석)

  • Kim, Yeong-Jin;Choi, Dong-You
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1261-1268
    • /
    • 2019
  • In this paper, we present the analysis of a novel monopole antenna with a reflector. The proposed monopole antenna is printed on a TRF-45 substrate, and the reflector, which is positioned near the base of the antenna, is printed on the FR-4 substrate. Positioning the reflector near the base of the antenna was found to suppress current radiation toward the back of the monopole antenna. Comparative analysis of the proposed monopole antenna and a conventional monopole antenna without a reflector revealed that the bandwidths of the antenna with and without a reflector were 2.65 GHz and 2.88 GHz, respectively. Additionally, the antenna without a reflector was observed to have a bi-directional radiation pattern in the E-plane, and an omni-directional radiation pattern in the H-plane. However, only the antenna with a reflector was found to suppress back radiation, and provide non-uniform directional radiation in the E-plane and H-plane.

A Study on the Properties of UWB Circular Monopole Antenna with Folded Structure (접힌 구조의 UWB 원형 모노폴 안테나의 특성 연구)

  • Lim, Gye-Jae;Yoo, Young-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.147-151
    • /
    • 2015
  • In this paper, the performance variation of a planar circular monopole antenna is studied, when this antenna is fabricated to film type and installed in the space between case and PCB of UWB terminal. When the circular monopole part has the 'ㄷ' folded structure, the input impedance and return loss, bandwidth, radiation pattern of this antenna are simulated and measured. Then the performance variation is compared with conventional planar antenna. As the results, the folded type circular antenna is usable as a intenna of UWB communication terminal, because of the good return loss and radiation pattern performance in the 2.6 - 12 GHz including the UWB frequency band.

Design of Dual-band Monopole Antenna for WLAN and UWB Applications (WLAN 및 UWB 응용을 위한 이중 대역 모노폴 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.811-817
    • /
    • 2014
  • In this paper, a design method for a dual-band monopole antenna operating in the bands of 2.45 GHz WLAN and UWB is studied. A monopole antenna operating in UWB band is first designed, and a slot is inserted on the monopole to operate in 2.45 GHz WLAN band. The optimized dual-band monopole antenna is fabricated on an FR4 substrate, and the experimental results show that the antenna has a dual-band characterisitc in WLAN and UWB bands with the frequency bands of 2.35-2.50 GHz and 2.99-11.82 GHz for a VSWR < 2. Measured gain is 1 dBi at 2.45 GHz, and ranges 1.5-4.6 dBi in the frequency band of 3.1-10.6 GHz.

Design of a U-Type Planar UWB Antenna Composed of Monopole Pair (모노폴 쌍으로 구성된 U자형 평면 UWB 안테나 설계)

  • Lee, Ho-Sang;Jang, Jae-Sam;Jung, Young-Ho;Kim, Cheol-Bok;Kim, Jae-Hoon;Park, Seung-Bae;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.9
    • /
    • pp.60-66
    • /
    • 2008
  • In this paper, the CPW-fed Ultra-wideband antenna is designed and fabricated for UWB communications. To achieve ultra-wide bandwidth of the antenna, we propose the mutual coupling of two planar monopole antennas. The mutual coupling of monopole pair of the proposed antenna is optimized by adjusting the parameters, the widths of the planar monopoles and the space between two monopoles. Two UWB antennas with different horizontal sections of the CPW-fed monopole antenna are fabricated and measured to examine the mutual coupling effects on the monopole pair antenna. The measured result show that two antennas are satisfied with UWB communication band(3.1$\sim$10.6Ghz).

An UWB Design of Plane Bow-Tie Monopole Antenna (평면형 보우타이 모노폴 안테나의 초광대역 설계)

  • Kim, Tae-Woo;Choi, Kyoung;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1212-1218
    • /
    • 2014
  • This paper proposes a planar bow-tie UWB antenna by modifying the ground patch of a reference bowtie-monopole antenna satisfying low band of UWB. The proposed antenna was implemented with five-angled ground patch to be operated in whole UWB band, while the reference antenna had a ground patch of half circle type. The measured return loss satisfies less than -10 dB in 3.1~10.6 GHz, except 4.9~5.8 GHz rejection band. The measured radiation pattern is almost the same with that of the monopole antenna. The radiation gain reduction is about 8 dB at rejection band.

Modified Monopole Antenna for Multi resonance Wideband (다중 공진 광대역 수정된 모노폴안테나)

  • Cho, Tea-Il;Bum, Byung-Gyun;Lim, Seung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.2
    • /
    • pp.53-57
    • /
    • 2008
  • This paper designed and fabricated the printed dual monopole antenna with CPW feeder for PCS and UWB(Ultra-Wide Band) band. In this paper, modified dual monopole antenna is proposed transform conventional monopole antenna to get dual band frequency. The dual monopole antennas have dual band, broad bandwidth and omni-directional radiation patterns, as it is the conventional monopole antenna. As one monopole operated a stub to match feed line with antenna, we are obtained easy an ideal impedance matching. It is increased band width of impedance. The antenna bandwidth is about 1350MHz (1.69~2.04[GHz]z]) at 1st resonance frequency, 2,670MHz (4.33~6[GHz]) at 2nd, resonance frequency, and, 3,980MHz (6.1~10.08[GHz]) at 3th resonance frequency on VSWR$$\leq_-$$2, and then we can be got not only 1.75~1.87 [GHz] PCS band but also, UWB band.

  • PDF

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • Cha, Sang-Jin;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.442-445
    • /
    • 2003
  • The use of a single UWB antenna which covers a wide range of frequencies is very desirable for future wireless communications system. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover UWB frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The results of measurement are almost similar to those of simulation.

  • PDF

Trapezoidal Monopole Microstrip Antenna for UWB (UWB용 사다리꼴 모노폴 마이크로스트립 안테나)

  • Joo, Chang-Bok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.134-140
    • /
    • 2009
  • In this paper, we discussed the trapezoidal antenna model in the microstrip structure for UWB communications in the frequency band of $3.1{\times}10.6GHz$. Through the computer simulations for the difference size of trapezoidal monopole microstrip antenna model, the good impedance matching characteristic of return loss less than -10dB(VSWR<2) in all the band of UWB showed. The optimized antenna of this paper also showed the quasi-isotropic radiation characteristics in the horizontal plane and linear phase characteristic of nondispersive property.