• 제목/요약/키워드: UWB Ranging

Search Result 64, Processing Time 0.023 seconds

TWR based Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application (재난 구조용 다중 로봇을 위한 GNSS 음영지역에서의 TWR 기반 협업 측위 기술)

  • Lee, Chang-Eun;Sung, Tae-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.

Impulse Based TOA Estimation Method Using Non-Periodic Transmission Pattern in LR-WPAN (LR-WPAN에서 비주기적 전송 패턴을 갖는 임펄스 기반의 TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Hong, Yun-Gi;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.352-360
    • /
    • 2008
  • Recently Task Group (TG) 4 of the Institute of Electrical and Electronics Engineers (IEEE) 802.15a has been recommended a system with ranging capability in existence of multiple Simultaneous operating piconets (SOPs) as well as low-cost, low-power. According to the ranging service, coherent and non-coherent based ranging schemes using ternary code have been adopted as a standard. However it is hard to estimate an accurate time of arrival (TOA) in case of using direct sequence based TOA estimation method because pulse repetition interval (PRI) offered by TG is more limited than the maximum excess delay (MED) of channel. To mitigate inter pulse interference (IPI) problem, this paper proposes a non-coherent TOA estimation scheme using non-periodic transmission (NPT) pattern. The proposed receiver is based on a non-coherent energy detection considering with motivation of low rate wireless personal area network (LR-WPAN). TOA information is estimated via proper comparison with a prescribed threshold after the sliding correlation and search back window (SBW) process for reducing TOA error. To verify the performance of proposed ranging scheme, two distinct channel models approved by IEEE 802.15.4a TG are considered. According to the simulation results, we could conclude that the proposed scheme have performed better performance than the conventional method on the existence of multiple SOPs.

Location Estimation Method using Extended Kalman Filter with Frequency Offsets in CSS WPAN (CSS WPAN에서 주파수 편이를 보상하는 확장 Kalman 필터를 사용한 이동노드의 위치추정 방식)

  • Nam, Yoon-Seok
    • The KIPS Transactions:PartC
    • /
    • v.19C no.4
    • /
    • pp.239-246
    • /
    • 2012
  • The function of location estimation in WPAN has been studied and specified on the ultra wide band optionally. But the devices based on CSS(Chirp Spread Spectrum) specification has been used widely in the market because of its functionality, cheapness and support of development. As the CSS device uses 2.4GHz for a carrier frequency and the sampling frequency is lower than that of the UWB, the resolution of a timestamp is very coarse. Then actually the error of a measured distance is very large about 30cm~1m at 10 m depart. And the location error in ($10m{\times}10m$) environment is known as about 1m~2m. So for some applications which require more accurate location information, it is very natural and important to develop a sophisticated post processing algorithm after distance measurements. In this paper, we have studied extended Kalman filter with the frequency offsets of anchor nodes, and proposed a novel algorithm frequency offset compensated extended Kalman filter. The frequency offsets are composed with a variable as a common frequency offset and constants as individual frequency offsets. The proposed algorithm shows that the accurate location estimation, less than 10cm distance error, with CSS WPAN nodes is possible practically.

Folded Ultra Wideband Monopole Antenna for SDR Application (Software Defined Radio (SDR) 무전기용 접힌 평면 구조의 초광대역 안테나)

  • Oh, Jun-Hwa;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.52-58
    • /
    • 2009
  • We propose a folded monopole antenna with loads, and analyze the roles of design parameters which affect the return loss of the proposed antenna. VSWR < 3 bandwidth of the antenna is 30 ~ 2000 MHz, ranging from the HF/VHF/UHF bands. For operating travelling antenna, we connect six loads at the end of the antenna. The reflected wave is drastically reduced due to the six loads. For improved return loss properties, we use Klopfenstein tape that determine positions and values of six loads. The propose antenna has omni-directional radiational patterns like that of conventional monopole antennas. For wideband impedance transformation, we use the balun which operating frequency region is 10 ~ 1900 MHz. We expect the proposed antenna has important role for the wideband and multi-rold multi-functional communication systems.