• Title/Summary/Keyword: UWB Ranging

Search Result 64, Processing Time 0.023 seconds

Analysis of Ranging Performance According to Analog Front End Characteristics in a Noncoherent UWB System (Noncoherent UWB 시스템에서 Analog Front End 특성에 따른 레인징 성능 분석)

  • Kim, Jae-Woon;Park, Young-Jin;Lee, Soon-Woo;Shin, Yo-An
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.77-86
    • /
    • 2010
  • In this paper, we present a noncoherent IR-UWB (Impulse Radio-Ultra Wide Band) ranging system with an AFE (Analog Front End) composed of a simple integrator and an 1-bit ADC (Analog-to-Digital Converter), and define AFE characteristics affecting the ranging performance. This system is realistic and easy to implement, since the integrator simply accumulates signal energies and the simple 1-bit ADC is applied instead of the multi-bit ADCs for coherent IR-UWB systems. On the other hand, its ranging accuracy is largely affected channel environments such as noise, multipath fading and so on, since the noncoherent receiver simply squares and integrates the received signals. However, despite these practical importances, there are few conventional researches on the performance analysis according to AFE characteristics in IR-UWB ranging systems. To this end, we analyze in this paper ranging performance according to AFE characteristics for the noncoherent IR-UWB ranging system in various wireless channel environments, and through these results we also present system parameters to be considered in UWB hardware designs.

Frequency Offset Estimation for IR-UWB Packet-Based Ranging System (IR-UWB 패킷 기반의 Ranging 시스템을 위한 주파수 옵셋 추정기)

  • Oh, Mi-Kyung;Kim, Jae-Young;Lee, Hyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1184-1191
    • /
    • 2009
  • We aim at frequency offset estimation for IEEE 802.15.4a ranging systems, where an impulse-radio ultra-wideband (IR-UWB) signal is exploited, By incorporating the property of the ternary code in the preamble, we derive a simplified maximum-likelihood (ML) estimation of the frequency offset. In addition, a closed form estimator for implementation is investigated. Simulation results and theoretical analysis verify our estimators in IEEE 802.15.4a IR-UWB packet-based ranging systems.

A Ranging Algorithm for IR-UWB in Multi-Path Environment Using Gamma Distribution (IR-UWB의 다중경로 환경에서감마분포를 이용한 거리 추정 알고리즘)

  • Kim, Jin-Ho;Kim, Hyeong-Seok;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.2
    • /
    • pp.146-153
    • /
    • 2013
  • The IR-UWB radar system radiates a pulse whose width is several hundred pico sec at Tx antenna and check the time to receive the pulse that reflected from target to measure the TOA. In this paper, we present a new algorithm which supplement the conventional ranging algorithm for more accurate estimation. We get received signal data using IR-UWB Radar module which equipped a NVA6000 UWB Transceiver and analysis the data of multi-path. Consequently, we found the property of UWB multi-path signal, which best fit a Gamma distribution. so we present a algorithm using Gamma-distribution and compared a performance with conventional ranging algorithm.

Ranging Performance Evaluation of Relative Frequency Offset Compensation in High Rate UWB (고속 UWB의 상대주파수 차이 보상에 의한 거리추정 성능평가)

  • Nam, Yoon-Suk;Lim, Jae-Geol;Jang, Ik-Hyeon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.76-85
    • /
    • 2009
  • UWB signal with high resolution capability can be used to estimate ranging and positioning in wireless personal area network. The node works on its local clock and the frequency differences of nodes have serious affects on ranging algorithms estimating locations of mobile nodes. The low rate UWB, IEEE802.15.4a, describes asynchronous two way ranging methods such as TWR and SDS-TWR working without any additional network synchronization, but the algorithms can not eliminate the effect of clock frequency differences. Therefore, the mechanisms to characterize the crystal difference is essential in typical UWB PHY implementations. In high rate UWB, characterizing of crystal offset with tracking loop is not required. But, detection of the clock frequency offset between the local clock and remote clock can be performed if there is little noise induced jitter. In this paper, we complete related ranging equations of high rate UWB based on TWR with relative frequency offset, and analyze a residual error in the ideal equations. We also evaluate the performance of the relative frequency offset algorithm by simulation and analyze the ranging errors according to the number of TWR to compensate coarse clock resolution. The results show that the relative frequency offset compensation and many times of TWR enhance the performance to converge to a limited ranging errors even with coarse clock resolutions.

Ranging Enhancement using Frequency Offset Compensation in High Rate UWB (고속 UWB에서 주파수 편이 보상을 사용한 거리추정 성능향상)

  • Nam, Yoon-Seok;Jang, Ik-Hyeon
    • The KIPS Transactions:PartC
    • /
    • v.16C no.2
    • /
    • pp.229-236
    • /
    • 2009
  • UWB signal with high resolution capability can be used to estimate ranging and positioning in wireless personal area networks. The clock frequency differences of nodes have serious affects on asynchronous ranging methods to estimate locations of mobile nodes. The specification of high rate UWB describes successive TWR method with the estimation of a relative clock frequency offset. In this paper, we complete the ranging equations using relative frequency offset and time information, and propose a method to estimate the exact frequency offsets. We evaluate the ranging algorithms with simulation. The results show that the performances of the algorithms using frequency offsets are very close without noise. But, at noise environment, the method of exact frequency offsets shows better performance than that of relative frequency offsets.

IEEE 802.15.4a IR-UWB System Design for Indoor Ranging and Communications (실내 무선측위/통신을 위한 IEEE 802.15.4a IR-UWB 시스템 설계)

  • Oh, Mi-Kyung;Park, Joo-Ho;Oh, Jung-Yeol;Kil, Min-Su;Kim, Jae-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • This paper aims at designing an impulse-radio ultra-wideband (IR-UWB) transceiver, especially targeting the IEEE 802.15.4a indoor ranging and communication systems. We first investigate the IEEE 802.15.4a IR-UWB signals and suggest the full-digital transceiver architecture accordingly. Since the wireless systems equipped with the impulse signal have the property of low-duty cycle, i.e., discontinuity in time, while the conventional systems takes the continuous signals, it is required to reconfigure the system design, including link budget. Following brief introduction to our IEEE 802.15.4a IR-UWB system hardware, we finally examine the ranging performance in indoor environments to verify our system design.

  • PDF

Time-Domain Based Asynchronous IR-UWB Ranging System (시간 영역 기반의 비동기 IR-UWB 거리추정 시스템)

  • Kim, Hyeong-Rae;Yang, Hoon-Gee;Yang, Seong-Hyeon;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.347-354
    • /
    • 2011
  • This paper presents a time-domain based asynchronous IR-UWB ranging system. This system accomplishes the ranging by detecting peaks from the outputs of a correlator implemented by a FIR filter. To discriminate the peaks due to a signal component, we use windowing for the correlated data within which the data are sorted in amplitude-ascending order and the noise level is calculated. Comparing with the recently presented frequency-domain based ranging system, we show the system structure and explain how it operates for ranging. Moreover, through the simulations, the proposed system is compared with the frequency-domain based system in terms of performance.

Single Outlier Removal Technology for TWR based High Precision Localization (TWR 기반 고정밀 측위를 위한 단일 이상측정치 제거 기술)

  • Lee, Chang-Eun;Sung, Tae-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.350-355
    • /
    • 2017
  • UWB (Ultra Wide Band) refers to a system with a bandwidth of over 500 MHz or a bandwidth of 20% of the center frequency. It is robust against channel fading and has a wide signal bandwidth. Using the IR-UWB based ranging system, it is possible to obtain decimeter-level ranging accuracy. Furthermore, IR-UWB system enables acquisition over glass or cement with high resolution. In recent years, IR-UWB-based ranging chipsets have become cheap and popular, and it has become possible to implement positioning systems of several tens of centimeters. The system can be configured as one-way ranging (OWR) positioning system for fast ranging and TWR (two-way ranging) positioning system for cheap and robust ranging. On the other hand, the ranging based positioning system has a limitation on the number of terminals for localization because it takes time to perform a communication procedure to perform ranging. To overcome this problem, code multiplexing and channel multiplexing are performed. However, errors occur in measurement due to interference between channels and code, multipath, and so on. The measurement filtering is used to reduce the measurement error, but more fundamentally, techniques for removing these measurements should be studied. First, the TWR based positioning was analyzed from a stochastic point of view and the effects of outlier measurements were summarized. The positioning algorithm for analytically identifying and removing single outlier is summarized and extended to three dimensions. Through the simulation, we have verified the algorithm to detect and remove single outliers.

A Study on the Implementation Considerations of Communication System for Wireless Ranging Applications (무선 거리인식 응용을 위한 통신시스템 구현 고려사항에 관한 연구)

  • Roh, Jae-Sung;Kim, Sung-Chul;Shin, Yu-Sub
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.563-565
    • /
    • 2011
  • In this paper, the implementation consideration of communication system is suggested in IEEE 802.15.4a based wireless sensor network, and the practical issues for UWB ranging system design are investigated. First, design of UWB signals for ranging applications is considered, and selection of various signal parameters is studied. Then, link analysis is performed in order to determine UWB signal quality as a function of distance.

  • PDF

High-Precision Ranging Scheme based on Multipath Delay Analysis in IR-UWB systems (IR-UWB 시스템에서 다중경로 지연시간 분석을 통한 고 정밀 거리추정)

  • Jeon, In-Ho;Kim, Young-Ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.778-785
    • /
    • 2010
  • This paper proposes a high-precision ranging scheme based on channel estimation technique and multipath delay analysis in IR-UWB systems. When the IR-UWB signal is transmitted and received, the high-precision ranging is estimated with the time-of-arrival information of the signal. In the proposed scheme, the channel estimation process with the minimum mean square error technique or zero forcing technique is performed and the overlapped multipath within the pulse is analyzed with matrix pencil (MP) algorithm to achieve the ranging accuracy of centimeters. The performance of proposed scheme is evaluated with various IEEE 802.15.4a channel models and the relationship between the ranging performance and the computational complexity is analyzed in terms of the MP parameter values.