• Title/Summary/Keyword: UWB

Search Result 1,093, Processing Time 0.026 seconds

Design of 10.525GHz Self-Oscillating Mixer Using P-Core Voltage Controlled Oscillator (P-코어 VCO를 사용한 10.525GHz 자체발진 혼합기의 설계)

  • Lee, Ju-Heun;Chai, Sang-Hoon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.61-68
    • /
    • 2018
  • This paper describes design of a 10.525 GHz self oscillating mixer semiconductor IC chip combining voltage controlled oscillator and frequency mixer using silicon CMOS technology for Doppler radar applications. The p-core type VCO included in the self oscillating mixer minimizes the noise contained in the transmitted signal. This noise minimization increases the sensing distance and acts in a direction favorable to the reaching distance and the sensitivity of the motion detection sensor. Simulation results for phase noise show that a VCO designed as a P-core has a noise characteristic of -106.008 dBc / Hz at 1 MHz offset and -140.735 dBc / Hz at 25 MHz offset compared to a VCO designed with N-core and NP-core showed excellent noise characteristics. If a self-oscillating mixer is implemented using a p-core designed VCO in this study, a motion sensor with excellent range and reach sensitivity will be produced.

Classification of Respiratory States based on Visual Information using Deep Learning (심층학습을 이용한 영상정보 기반 호흡신호 분류)

  • Song, Joohyun;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.296-302
    • /
    • 2021
  • This paper proposes an approach to the classification of respiratory states of humans based on visual information. An ultra-wide-band radar sensor acquired respiration signals, and the respiratory states were classified based on two-dimensional (2D) images instead of one-dimensional (1D) vectors. The 1D vector-based classification of respiratory states has limitations in cases of various types of normal respiration. The deep neural network model was employed for the classification, and the model learned the 2D images of respiration signals. Conventional classification methods use the value of the quantified respiration values or a variation of them based on regression or deep learning techniques. This paper used 2D images of the respiration signals, and the accuracy of the classification showed a 10% improvement compared to the method based on a 1D vector representation of the respiration signals. In the classification experiment, the respiration states were categorized into three classes, normal-1, normal-2, and abnormal respiration.

Design of Vivaldi Antenna suitable for Impulse-like Waveform Radiation (임펄스 유사 신호 복사에 적합한 비발디 안테나 설계)

  • Doojin Lee;Bong Jin Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2024
  • In this paper, the method to design the antenna, which is suitable for an impulse-like waveform radiation, is presented. In general, the impulse-like waveform has its spectrum of around sub GHz bandwidth and the antenna should be properly designed for not only operating wide-bandwidth also reflecting the time domain characteristics for near-zone impulse radar applications. In this regard, Vivaldi antenna has been designed and characterized in terms of short-pulse radiating aspects in the time domain and verified by measured results. The designed antenna has shown to be operating within wide-bandwidth and to be stable for the input impedance from 1.8 to more than 10GHz. The far-zone radiating waveform has been investigated on each plane at the interval of 30degree and the designed antenna has shown to be a directive characteristic. It can be seen that those results proposed are widely applicable to the near area sensing applications such as ground-penetrating radar.

Effects of Heat-stress on Rumen Bacterial Diversity and Composition of Holstein Cows (고온 스트레스 영향에 따른 홀스타인종 젖소의 반추위내 미생물 균총 변화)

  • Kim, Dong Hyeon;Kim, Myung Hoo;Kim, Sang Bum;Ha, Seung Min;Son, Jun Kyu;Lee, Ji Hwan;Hur, Tai Young;Lee, Jae Yeong;Park, Ji Hoo;Choi, Hee Chul;Lee, Hyun Jeong;Park, Beom Young;Ki, Kwang Seok;Kim, Eun Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.227-234
    • /
    • 2019
  • This study was performed to investigate the effect of heat-stressed environment on rumen microbial diversity in Holstein cows. Rectal temperature and respiration rate were measured and rumen fluid was collected under normal environment (NE; Temperature humidity index (THI)=64.6) and heat-stressed environment (HE; THI=87.2) from 10 Holstein cows (60±17.7 months, 717±64.4 kg) fed on the basis of dairy feeding management in National Institute of Animal Science. The rumen bacteria diversity was analyzed by using the Illumina HiSeqTM 4000 platform. The rectal temperature and respiratory rate were increased by 1.5℃ and 53 breaths/min in HE compared to that in NE, respectively. In this study, HE exposure induced significant changes of ruminal microbe. At phylum level, Fibrobacteres were increased in HE. At genus level, Ruminococcaceae bacterium P7 and YAD3003, Butyrivibrio sp. AE2032, Erysipelotrichaceae bacterium NK3D112, Bifidobacterium pseudolongum, Lachnospiraceae bacterium FE2018, XBB2008, and AC2029, Eubacterium celulosolvens, Clostridium hathewayi, and Butyrivibrio hungatei were decreased in HE, while Choristoneura murinana nucleopolyhedrovirus, Calothrix parasitica, Nostoc sp. KVJ20, Anabaena sp. ATCC 33047, Fibrobacter sp. UWB13 and sp. UWB5, Lachnospiraceae bacterium G41, and Xanthomonas arboricola were increased in HE. In conclusion, HE might have an effect to change the rumen microbial community in Holstein cows.

The Individual Discrimination Location Tracking Technology for Multimodal Interaction at the Exhibition (전시 공간에서 다중 인터랙션을 위한 개인식별 위치 측위 기술 연구)

  • Jung, Hyun-Chul;Kim, Nam-Jin;Choi, Lee-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • After the internet era, we are moving to the ubiquitous society. Nowadays the people are interested in the multimodal interaction technology, which enables audience to naturally interact with the computing environment at the exhibitions such as gallery, museum, and park. Also, there are other attempts to provide additional service based on the location information of the audience, or to improve and deploy interaction between subjects and audience by analyzing the using pattern of the people. In order to provide multimodal interaction service to the audience at the exhibition, it is important to distinguish the individuals and trace their location and route. For the location tracking on the outside, GPS is widely used nowadays. GPS is able to get the real time location of the subjects moving fast, so this is one of the important technologies in the field requiring location tracking service. However, as GPS uses the location tracking method using satellites, the service cannot be used on the inside, because it cannot catch the satellite signal. For this reason, the studies about inside location tracking are going on using very short range communication service such as ZigBee, UWB, RFID, as well as using mobile communication network and wireless lan service. However these technologies have shortcomings in that the audience needs to use additional sensor device and it becomes difficult and expensive as the density of the target area gets higher. In addition, the usual exhibition environment has many obstacles for the network, which makes the performance of the system to fall. Above all these things, the biggest problem is that the interaction method using the devices based on the old technologies cannot provide natural service to the users. Plus the system uses sensor recognition method, so multiple users should equip the devices. Therefore, there is the limitation in the number of the users that can use the system simultaneously. In order to make up for these shortcomings, in this study we suggest a technology that gets the exact location information of the users through the location mapping technology using Wi-Fi and 3d camera of the smartphones. We applied the signal amplitude of access point using wireless lan, to develop inside location tracking system with lower price. AP is cheaper than other devices used in other tracking techniques, and by installing the software to the user's mobile device it can be directly used as the tracking system device. We used the Microsoft Kinect sensor for the 3D Camera. Kinect is equippedwith the function discriminating the depth and human information inside the shooting area. Therefore it is appropriate to extract user's body, vector, and acceleration information with low price. We confirm the location of the audience using the cell ID obtained from the Wi-Fi signal. By using smartphones as the basic device for the location service, we solve the problems of additional tagging device and provide environment that multiple users can get the interaction service simultaneously. 3d cameras located at each cell areas get the exact location and status information of the users. The 3d cameras are connected to the Camera Client, calculate the mapping information aligned to each cells, get the exact information of the users, and get the status and pattern information of the audience. The location mapping technique of Camera Client decreases the error rate that occurs on the inside location service, increases accuracy of individual discrimination in the area through the individual discrimination based on body information, and establishes the foundation of the multimodal interaction technology at the exhibition. Calculated data and information enables the users to get the appropriate interaction service through the main server.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

Design of 2.4/5.8GHz Dual-Frequency CPW-Fed Planar Type Monopole Active Antennas (2.4/5.8GHz 이중 대역 코프래너 급전 평면형 모노폴 능동 안테나 설계)

  • Kim, Joon-Il;Chang, Jin-Woo;Lee, Won-Taek;Jee, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.42-50
    • /
    • 2007
  • This paper presents design methods for dual-frequency(2.4/5.8GHz) active receiving antennas. The proposed active receiving antennas are designed to interconnect the output port of a wideband antenna to the input port of an active device of High Electron Mobility Transistor directly and to receive RF signals of 2.4GHz and 5.2GHz simultaneously where the impedance matching conditions are optimized by adjusting the length of $1/20{\lambda}_0$(@5.8GHz) CPW transmission line in the planar antenna The bandwidth of implemented dual-frequency active receiving antennas is measured in the range of 2.0GHz to 3.1GHz and 5.25GHz to 5.9GHz. Gains are measured of 17.0dB at 2.4GHz and 15.0dB at 5.2GHz. The measured noise figure is 1.5dB at operating frequencies.

Impulse Based TOA Estimation Method Using Non-Periodic Transmission Pattern in LR-WPAN (LR-WPAN에서 비주기적 전송 패턴을 갖는 임펄스 기반의 TOA 추정 기법)

  • Park, Woon-Yong;Park, Cheol-Ung;Hong, Yun-Gi;Choi, Sung-Soo;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.4A
    • /
    • pp.352-360
    • /
    • 2008
  • Recently Task Group (TG) 4 of the Institute of Electrical and Electronics Engineers (IEEE) 802.15a has been recommended a system with ranging capability in existence of multiple Simultaneous operating piconets (SOPs) as well as low-cost, low-power. According to the ranging service, coherent and non-coherent based ranging schemes using ternary code have been adopted as a standard. However it is hard to estimate an accurate time of arrival (TOA) in case of using direct sequence based TOA estimation method because pulse repetition interval (PRI) offered by TG is more limited than the maximum excess delay (MED) of channel. To mitigate inter pulse interference (IPI) problem, this paper proposes a non-coherent TOA estimation scheme using non-periodic transmission (NPT) pattern. The proposed receiver is based on a non-coherent energy detection considering with motivation of low rate wireless personal area network (LR-WPAN). TOA information is estimated via proper comparison with a prescribed threshold after the sliding correlation and search back window (SBW) process for reducing TOA error. To verify the performance of proposed ranging scheme, two distinct channel models approved by IEEE 802.15.4a TG are considered. According to the simulation results, we could conclude that the proposed scheme have performed better performance than the conventional method on the existence of multiple SOPs.

The development of asynchronous ranging scheme based on the virtual slot (가상슬롯 기반의 비동기 거리 추정 기법 개발)

  • Ko, Young-Wook;Kim, Hwan-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.31-37
    • /
    • 2016
  • Ranging is divided into a synchronous scheme and an asynchronous scheme according to the presence of global synchronization between nodes. In general, the asynchronous ranging is preferred over synchronous ranging because it does not require an expensive high-precision oscillator for the global synchronization. On the other hand, in a conventional asynchronous ranging scheme, the packets, which are generated by all nodes in a positioning system of a large-scale infrastructure and need to be sent for localization by reference nodes, are considerable, which cause an increase in network traffic as the number of nodes increases. The traffic congestion lowers the throughput of the network leading to a considerable loss of energy. To solve this problem, this paper proposes a ranging scheme, in which virtual transmission slots randomly and discretely selected by a plurality of nodes are used to reduce the overheads needed in synchronizing the nodes, and the ranging is performed asynchronously based on the virtual transmission slots, thereby decreasing the network traffic. In addition, a performance test proved that the proposed ranging scheme was stronger than the TWR and SDS-TWR on an error range, even though the intensity of traffic was very low.

Fixed node reduction technique using relative coordinate estimation algorithm (상대좌표 추정 알고리즘을 이용한 고정노드 저감기법)

  • Cho, Hyun-Jong;Kim, Jong-Su;Lee, Sung-Geun;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.220-226
    • /
    • 2013
  • Recently, with the rapid development of factory automation and logistics system, a few workers were able to manage the broad workplace such as large vessels and warehouse. To estimate the exact location of these workers in the conventional wireless indoor localization systems, three or more fixed nodes are generally used to recognize the location of a mobile node consisting of a single node. However, these methods are inefficient in terms of node deployment because the broad workplace requires a lot of fixed nodes compared to workers(mobile nodes). Therefore, to efficiently deploy fixed nodes in these environments that need a few workers, this paper presents a novel estimation algorithm which can reduce the number of fixed nodes by efficiently recognizing the relative coordinates of two fixed nodes through a mobile node composed of three nodes. Also, to minimize the distance errors between mobile node and fixed node, rounding estimation(RE) technique is proposed. Experimental results show that the error rate of localization is improved, by using proposed RE technique, 90.9% compared to conventional trilateration in the free space. In addition, despite the number of fixed nodes can be reduced by up to 50% in the indoor free space, the proposed estimation algorithm recognizes precise location which has average error of 0.15m.