• Title/Summary/Keyword: UVO treatment

Search Result 3, Processing Time 0.02 seconds

Effect of UVO Treatment on Optical and Electrical Properties of NiOx Thin Film and Perovskite Solar Cells (UVO 처리에 따른 NiOx 박막 및 페로브스카이트 태양전지 셀 특성 변화)

  • Sujin Cho;Jae-Keun Hwang;Dowon Pyun;Seok Hyun Jeong;Solhee Lee;Wonkyu Lee;Ji-Seong Hwang;Youngho Choe;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • Perovskite solar cells have exhibited a remarkable increase in efficiency from an initial 3.8% to 26.1%, marking a significant advancement. However, challenges persist in the commercialization of perovskite solar cells due to their low stability with respect to humidity, light exposure, and temperature. Moreover, the instability of the organic charge transport layer underscores the need for exploring inorganic alternatives. In the manufacturing process of the perovskite solar cells' oxide charge transport layer, ultraviolet-ozone (UVO) treatment is commonly applied to enhance the wettability of the perovskite solution. The UVO treatment on metal oxides has proven effective in suppressing surface oxygen vacancies and removing surface organic contaminants. This study focused on the characterization of nickel oxide as the hole transport material in perovskite solar cells, specifically investigating the impact of UVO treatment on film properties. Through this analysis, changes induced by the UVO treatment were observed, and consequent alterations in the device characteristics were identified.

Fabrication of One-Dimensional Graphene Metal Edge Contact without Graphene Exfoliation

  • Choe, Jeongun;Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.371.2-371.2
    • /
    • 2016
  • Graphene electronics is one of the promising technologies for the next generation electronic devices due to the outstanding properties such as conductivity, high carrier mobility, mechanical, and optical properties along with extended applications using 2 dimensional heterostructures. However, large contact resistance between metal and graphene is one of the major obstacles for commercial application of graphene electronics. In order to achieve low contact resistance, numerous researches have been conducted such as gentle plasma treatment, ultraviolet ozone (UVO) treatment, annealing treatment, and one-dimensional graphene edge contact. In this report, we suggest a fabrication method of one-dimensional graphene metal edge contact without using graphene exfoliation. Graphene is grown on Cu foil by low pressure chemical vapor deposition. Then, the graphene is transferred on $SiO_2/Si$ wafer. The patterning of graphene channel and metal electrode is done by photolithography. $O_2$ plasma is applied to etch out the exposed graphene and then Ti/Au is deposited. As a result, the one-dimensional edge contact geometry is built between metal and graphene. The contact resistance of the fabricated one-dimensional metal-graphene edge contact is compared with the contact resistance of vertically stacked conventional metal-graphene contact.

  • PDF

Inkjet-printed narrow silver line on plastic substrate for high resolution flexible electronics

  • Chung, Seung-Jun;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.142-144
    • /
    • 2009
  • We demonstrated narrow and good aspect-ratio inkjet-printed silver lines with multi-time over-printing methods. By using this strategy, narrow silver lines were obtained with 200 nm thickness and their width and gap between printed lines of uniform narrow silver lines were 30 ${\mu}m$ and 17 ${\mu}m$, respectively. It also had good conductivity, sheet resistacne of 0.36 ${\Omega}/{\square}$ and specific resistance of $8{\mu}{\Omega}{\cdot}cm$. In current stress test, narrow silver line with 30 ${\mu}m$ width was able to a current flow up to 50 mA (2.1A/$cm^2$). Using surface treatment on poly-arylate substrate with $UVO_3$, we obtained clean-edge narrow line without any edge waviness.

  • PDF