• Title/Summary/Keyword: UV254 (UV absorbance at 254nm)

Search Result 10, Processing Time 0.025 seconds

Monitoring of Water Quality Parameters using Spectroscopic Characteristics of River Water - Ulsan Area (하천 분광특성을 이용한 수질항목 모니터링 연구 - 울산 지역)

  • Hur, Jin;Kim, Mi-Kyung;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.863-871
    • /
    • 2007
  • Spectroscopic characteristics of river water from four major watersheds in the Ulsan area were measured to examine their potential for estimating water quality parameters. The total 176 river samples were collected from 44 sites of small streams within the watersheds during the year 2006. Spectroscopic characteristics investigated included protein-like fluorescence (FLF) intensity, fulvic-like fluorescence (FLF) intensity, terrestrial humic-like fluorescence (TLF) intensity, UV absorbance at 254 nm, and UV absorbance difference at 220 nm and 254 nm. Protein-like fluorescence intensity showed linear relationships with biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorous (TP) concentrations of the samples with the correlation of 0.784, 0.779, and 0.733, respectively. Due to the UV absorption characteristics of nitrate at 220 nm, UV absorbance difference at 220 nm and 254 nm was selected to represent total nitrogen (TN) concentration. Exclusion of some samples with PLF intensity higher than 5.0 improved the correlation between the UV absorbance difference and TN as demonstrated by the increase of the correlation coefficient from 0.392 to 0.784. Instead, for the samples with PLF intensity lower than 5.0, the highest correlation of TN was achieved with UV absorbance at 254 nm. The results suggest that PLF intensity could be used as the estimation index for BOD, COD, and TP concentration of river water, and as the primary screening index for the prediction of TN using UV absorbance difference. Some BOD-based water quality levels among the river water were statistically discriminated by the PLF intensity. Low p-values were obtained from the t-tests on the samples with the first level and the second level (p=0.0003) and the samples with the second and the third levels (p=0.0413). Our combined results demonstrated that the selected spectroscopic characteristics of river water could be utilized as a tool for on-site real-time monitoring and/or the primary estimation of water quality.

Impact of Water Quality on the Formation of Bromate and Formaldehyde during Water Ozonation

  • Lee, Chung-Youl;Lee, Yoon-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.441-450
    • /
    • 2007
  • 본 연구는 humic acid 및 bromide를 함유한 상수 원수에 오존 처리를 수행함에 있어 수질 특성 및 공정조건에 따른 bromate 및 formaldehyde 의 생성을 고찰하였다 . 회분식 실험장치를 이용하여 오존의 주입농도, DOC 농도, bromide 농도, pH, 알칼리도 및 반응 시간을 변화시키면서 오존처리 시 생성되는 대표적인 부산물인 bromate 및 formaldehyde의 거동을 파악하였다. 본 연구에서 검토된 영향 인자 중 수중의 pH조건은 bromate 및 formaldehyde의 생성에 가장 중요한 인자로 나타났다. DOC(dissolved organic carbon) 농도가 증가할수록 bromate 생성은 감소하였고 formaldehyde 의 생성은 증가하였다. 오존처리를 통해 UV254 는 효율적으로 감소되었고, UV254의 감소율 및 오존 농도는 선형 관계를 나타냈다.

The Effects of PAC (Powdered Activated Carbon) on Water Treatment Performance of an Immersed Membrane System Using Flat-sheet Membrane Module (평막을 이용한 침지형 막여과시스템에서 고농도 분말활성탄 주입에 의한 수처리성능 개선 효과)

  • Gai, Xiang-Juan;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.195-201
    • /
    • 2007
  • A submerged flat-sheet membrane separation system integrated with PAC (powdered activated carbon) was used in this research in order to investigate the effects of PAC on the efficiencies of operation and treatment and to evaluate the performance of the system. The experiments were carried out under operating conditions of a filtration rate of 0.38 m/d, water temperature of $20-28^{\circ}C$, and PAC dose of 0 g/L (Run-A) and 20 g/L (Run-B). The influent concentrations of TOC (total organic carbon), $NH_4{^+}-N$ (ammonia nitrogen) and $UV_{254}$ (UV absorbance at 254 nm) were 2.48 mg/L, 1.4 mg/L and 2.53 1/m, respectively. TOC removal of 43.2 and 73.6%, ammonia nitrogen removal of 4.9 and 15.9%, and $UV_{254}$ removal of 20.6 and 31.6% were obtained for Run-A and Run-B, respectively. During an experimental period of 33 days, no change was found in TMP (Run-B), but the TMP in Run-A increased by 5 kPa after 29 days. This research showed that the filtrate quality and the performance efficiency were enhanced when PAC was introduced into the filtration system.

High Performance Liquid Chromatographic Determination of Xanthinol Nicotinate (HPLC에 의한 Xanthinol Nicotinate의 정량(定量))

  • Han, Cho-Duk
    • YAKHAK HOEJI
    • /
    • v.28 no.6
    • /
    • pp.321-325
    • /
    • 1984
  • A HPLC determination method of xanthinol nicotinate(I) was developed for study of its stability and characteristics in solutions. I was determined using an ${\mu}-Bondapak\;C_{18}$ column with a mobile phase of methanol: $H_2O$ (1 : 1) and UV absorbance detection at 254nm. The results revealed that the method was enough to use as stability indicating determination with the mean of 99.9% and standard deviation of ${\pm}1.42%$ when analyzed 10 times for standard solution.

  • PDF

Development of Estimation Indices for Refractory Organic Matter in the Han-River Basin using Organic Matter Parameters and Spectroscopic Characteristics (일반 유기물 항목과 분광특성을 이용한 한강수계 내 난분해성 물질 지표 제시)

  • Lee, Bomi;Lee, Tae-Hwan;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.625-633
    • /
    • 2011
  • A long-term water quality monitoring in the Han River Basin reveals a consistent increasing trend for the concentration of refractory organic matter (R-OM) in major monitoring sites of the watershed. Because the determination of R-OM concentrations typically requires a long time of microbial incubation, it is essential to present the estimation indices for R-OM for an efficient watershed management. In this study, a number of surface water samples were classified into three groups, each of which were collected from Lake Paldang, rivers at rain and non-rain events, respectively. The corresponding R-OM concentrations were correlated with biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total organic carbon (TOC) concentrations as well as ultraviolet and fluorescence intensities of the filtered samples. Among the traditional organic matter parameters, TOC exhibited the highest correlation coefficient with the R-OM concentrations regardless of the types of the sample groups. The equations for conversing TOC into R-OM concentrations were finally suggested as $0.43{\times}TOC+1.12$, $0.44{\times}TOC+0.61$, $0.24{\times}TOC+1.28$ for river samples at rain and non-rain events, and lake samples, respectively. TOC-BOD(C), the values of the TOC concentrations subtracted by carbon-converted BOD concentrations, was a good index for estimating the absolute concentrations of R-OM. UV absorbance at 254 nm was well correlated with R-OM concentrations of river samples while fluorescence intensities at 350 nm showed an excellent relationship with R-OM concentration of the lake samples. Our results suggests that simple spectroscopic parameters could be applied for in-situ monitoring tool techniques in watersheds.

Characterization of Dissolved Organics Based on Their Origins (상수 원수에 따른 용존 유기물의 특성 평가)

  • 허준무;박종안;장봉기;이종화
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.337-347
    • /
    • 1999
  • This study was carried out to evaluate the characteristics of dissolved organics based on their origins, which were divided into two categories. The first group consisted of river, lake and secondary sewage treatment effluent, which were chosen as representative of their origins. The second group were artificial samples which were made of AHA(Aldrich humic acids) and WHA(Wako humic acids). Physicochemical characteristics, biological degradability and THMEP(trihalomethane formation potential) of the samples were analysed based on the AMWD(apparent molecular weight distribution). Large portion of dissolved organic carbon(DOC) in the river and lake samples was comprised of LMW(low molecular weight), which that of AHA and WHA was HMW(high molecular weight). The DOC of the lake was evenly distributed in the all range of molecular weight. The river, lake and secondary treated effluent have lower ultraviolet(UV) absorbance at 254nm, and have a higher amount of humic acids. Higher absorbance of humic acids means that aliphatic bond and benzenoid type components that absorb UV light were contained in these kind of humic acids. It was expected that lake sample was the most biodegradable in the different samples investigated, and in order of secondary sewage treatment effluent, river, WHA and AHA based on the result of determination of specific ultraviolet absorbance(SUVA). Biodegradability showed similar result except for AHA, while dissolved organics in the range of LMW decreased during the biodegradability test, and on the contrary those of HMW increased. Production of the SMPs(soluble micobial products) was observed during humicfication of dissolved organics and the SMPs were higher production of the SMPs. THM formation was high in the samples containing HMW and similar tendency was shown in the THMEP(trihalomethane formation potential), except for WHA.

  • PDF

Effects of various lights, solvents, and zinc protoporphyrin on the chemical behavior of MTT formazan (빛, 용매와 zinc protoporphyrin에 의한 MTT 포마잔의 화학적 동태 변화)

  • Kim, Joo Hyoun;Hong, Jungil
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is commonly used for analyzing the cell viability. In this study, effects of various solvents, different lights, and zinc protoporphyrin (ZnPP) on the chemical behavior of MTT formazan were investigated. The color response of MTT formazan in NaOH was highly pronounced; the absorbance of MTT formazan in 0.1 N NaOH at 550 nm was >2-fold higher than that in water, dimethyl sulfoxide (DMSO), methanol, and ethanol. MTT formazan in DMSO and NaOH (>0.1 N) was relatively stable under fluorescent and UV light at 365 nm; its rapid degradation was induced under UV light at 254 nm in all solvents. ZnPP degraded MTT formazan under light in a time- and concentration-dependent manner; MTT formazan in 0.1 N NaOH was the most sensitive to ZnPP, followed by DMSO. These results suggest that NaOH and DMSO might be suitable media for MTT formazan for monitoring photosensitizing properties.

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.

Effects of Humic Acid on the pH-dependent Sorption of Europium (Eu) to Kaolinite (PH 변화에 따른 카올리나이트와 유로퓸(Eu)의 흡착에 대한 휴믹산의 영향)

  • Harn, Yoon-I;Shin, Hyun-Sang;Rhee, Dong-Seok;Lee, Myung-Ho;Chung, Euo-Cang
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.23-32
    • /
    • 2009
  • The sorption of europium (Eu (III)) onto kaolinite and the influence of humic acids over a range of pH 3 ~ 11 has been studied by batch adsorption experiment (V/m = 250 : 1 mL/g, $C_{Eu(III)}\;=\;1\;{\times}\;10^{-5}\;mol/L$, $C_{HA}\;=\;5{\sim}50\;mg/L$, $P_{CO2}=10^{-3.5}\;atm$). The concentrations of HA and Eu(III) in aqueous phase were measured by UV absorbance at 254nm (e.g., $UV_{254}$) and ICP-MS after microwave digestion for HA removals, respectively. Results showed that the HA sorption onto kaolinite was decreased with increasing pH and their sorption isotherms fit well with the Langmuir adsorption model (except pH 3). Maximum amount ($q_{max}$) for the HA sorption at pH 4 to 11 was ranged from 4.73 to 0.47 mg/g. Europium adsorption onto the kaolinite in the absence of HA was typical, showing an increases with pH and a distinct adsorption edge at pH 3 to 5. However in the presence of HA, Eu adsorption to kaolinite was significantly affected. HA was shown to enhance Eu adsorption in the acidic pH range (pH 3 ~ 4) due to the formation of additional binding sites for Eu coming from HA adsorbed onto kaolinite surface, but reduce Eu adsorption in the intermediate and high pH above 6 due to the formation of aqueous Eu-HA complexes. The results on the ternary interaction of kaolinte-Eu-HA are compared with those on the binary system of kaolinite-HA and kaolinite-Eu and adsorption mechanism with pH was discussed.

The Preparation and Release Property of Alginate Microspheres Coated Gelatin-cinnamic Acid (젤라틴-신남산 접합체가 코팅된 알긴산나트륨 마이크로스피어의 제조 및 방출 특성)

  • Lee, Ju Hyup;Ma, Jin Yeul;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.471-475
    • /
    • 2013
  • This study is about photosensitive microspheres prepared by coating alginate microspheres with gelatin-cinnamic acid conjugate. Firstly, alginate microspheres was prepared in water-in-oil (W/O) emulsion and then they were coated with gelatin- cinnamic acid conjugate. Herein, gelatin-cinnamic acid conjugate is obtained by the amidation between an amine group of gelatin and a carboxy group of cinnamic acid. Cinnamic acid is widely used as a photo-responsive material easy to dimerize and dedimeriz under UV irradiation at ${\lambda}$ = 254 nm and ${\lambda}$ = 365 nm, respectively. As shown in SEM-EDS, alginate was successfully coated with gelatin-ciannmic acid. By determining the absorbance of coated microspheres at 270nm, the amount of cinnamic acid per microspheres was 0.13/1. The SEM photos showed the size of coated microspheres is around $10{\mu}m$. And the degrees of dimerization and dedimerization were calculated to be 49% and 23% respectively. Then the release of FITC-dextran from the coated micrspheres was studied and release the degree was 42%. As a result, the coated microspheres have potential to be used as a photo-responsive drug carrier to delivery drugs.