• Title/Summary/Keyword: UV-replication

Search Result 53, Processing Time 0.026 seconds

Design of UV-Molding Process to Maximize the Replication Properties in Microstructures (미세구조체의 전사 특성을 향상시키기 위한 UV 성형 공정의 설계)

  • Kim, Dong-Mook;Kim, Seok-Min;Sohn, So-Young;Kang, Shin-Ill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.450-454
    • /
    • 2003
  • It is important to control the processing conditions to maximize the replication quality of UV-molded microstructure. In the present study, the tip radius anil surface roughness of V-groove structure were measured to quantify the replication quality. UV-curing dose and the applied pressure were experimentally selected as the governing Processing conditions that affect the replication quality of the UV-molded part. Finally. an experimental optimization technique combining central composite design and desirability function approach was used to maximize the replication quality of UV-molded structure.

Development of UV-molding process to fabricate functional micro-optical components (기능성 마이크로 광 부품의 성형을 위한 UV 성형 공정 기술 개발)

  • Kim, Seok-Min;Kang, Shin-Ill
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1332-1336
    • /
    • 2003
  • An experimental method is presented to maximize the replication quality of UV-molded micro-optical components. It is important to maximize the replication quality, because one can obtain the replicated micro-optical components with desired properties by accurate control of the shape. In the present study, a simple technique to avoid micro-air bubbles was first suggested. The effects of the UV-curing dose and the compression pressure on the replication quality of UV-molded structure were examined experimentally. Finally, as a practical application of the process design method, microlens arrays with diameters between 8 ${\mu}m$ and 96 ${\mu}m$ were fabricated by the present method, and the replication quality and the optical properties of the replicated microlens were measured and analyzed.

  • PDF

Fabrication of Microlens Array by UV-molding (UV 성형을 통한 마이크로 렌즈 어레이의 제작)

  • 김석민;임지석;강신일;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.236-241
    • /
    • 2004
  • UV-molded microlens arrays with high replication quality were fabricated using a parametric design method. It is important to maximize the replication quality, because one can obtain the replicated micro-optical components with desired properties by accurate control of the shape. In the present study, nickel mold inserts for microlens arrays with lenses having diameters between $3\mu\textrm{m}$ and $230\mu\textrm{m}$ were fabricated by electroforming process. An UV-molding system was designed and constructed, a simple technique to avoid micro-air bubbles was first suggested, and the effects of the compression pressure and UV-curing dose on the replication quality of UV-molded microlens arrays with a diameter of $14\mu\textrm{m}$ were examined experimentally. Finally, geometrical and optical properties of the replicated microlens arrays were measured and analyzed.

Micro replication quality of Fresnel lens using UV imprinting process (UV 임프린팅을 통한 프레넬 렌즈 제작 시 미세 복제 특성에 관한 연구)

  • Lim,, Ji-Seok;Kim, Byung-Wook;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.37-40
    • /
    • 2010
  • Fresnel lens is a kind of refractive optical lens with various advantages. It has nearly flat shaped optical lens that has small mass. Fresnel lens has number of applications in the compact optical systems. Recently, demands of high quality Fresnel lens for small size optical systems such as illumination units, compact imaging systems, display units, information storage systems, optical detecting units had increased rapidly. Conventional manufacturing process of high quality Fresnel lens is direct machining. However, it is not suitable for mass production because of high cost and long cycle time. Replication method can provide cost effective mass production process. However, there are various issues about replication of Fresnel lens. Fresnel lens has number of sharp blade shape prism. In the replication process, this blade shape causes defects that can affect optical efficiency. In this study, replication processes; injection molding process and UV imprinting process, were developed and evaluated using Fresnel lens that has maximum pattern height of $250\;{\mu}m$ and aspect ratio of 1.5.

Micro-replication quality of Fresnel Lens in UV micro-replication process (프레넬 렌즈 UV 미세복제 공정에서의 전사특성에 관한 연구)

  • Lim J.;Lee N.;Kim S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.79-82
    • /
    • 2005
  • Fresnel lens has number of applications in the optical systems because of its advantages. It is nearly flat lens that has small weight. It is conventionally used in lighthouse beacons, condensing unit of overhead projector and etc. Recently, demands of small size optical systems such as display units, information storage systems, optical detecting units had increased. Conventional manufacturing process of high quality Fresnel lens is direct machining. But it is not suitable for mass production because of high cost and long cycle time. Replication process is more suitable for mass production. But the Fresnel lens has number of sharp blade shape prism. In the replication process, this blade shape causes defects that can affect optical efficiency. In this study, replication process of blade shape pattern that has maximum height of $280{\mu}m$, aspect ratio 1.4 for Fresnel lens application.

  • PDF

Development of UV imprinting process for micro lens array of image sensor (UV 임프린트를 이용한 이미지 센서용 마이크로 렌즈 어레이 성형 공정 개발)

  • Lim, Ji-Seok;Kim, Seok-Min;Jeong, Gi-Bong;Kim, Hong-Min;Kang, Shin-Il
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.91-95
    • /
    • 2006
  • High-density image sensors rave microlens array to improve photosensitivity. It is conventionally fabricated by reflow process. The reflow process has some weak points. UV imprinting process can be proposed as an alternative process to integrate microlens array on photodiodes. In this study, the UV imprionting process to integrate microlens array on image sensor was developed using UV transparent flexible mold and simulated image sensor substrate. The UV transparent flexible mold was fabricated by replicating master pattern using siliconacrylate photopolymer. The releasing property and shape accuacy of siliconacrylate mold was analysed. After UV imprinting process, replication quality and align accuracy was analysed.

  • PDF

Development of UV imprinting process for micro lens array of image sensor (UV 임프린트를 이용한 이미지 센서용 마이크로 렌즈 어레이 성형 공정 개발)

  • Lim, Ji-Seok;Kim, Seok-Min;Jeong, Gi-Bong;Kim, Hong-Min;Kang, Shin-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.17-21
    • /
    • 2005
  • High-density image sensors have microlens array to improve photosensitivity. It is conventionally fabricated by reflow process. The reflow process has some weak points. UV imprinting process can be proposed as an alternative process to integrate microlens array on photodiodes. In this study, the UV imprionting process to integrate microlens array on image sensor was developed using W transparent flexible mold and simulated image sensor substrate. The UV transparent flexible mold was fabricated by replicating master pattern using siliconacrylate photopolymer. The releasing property and shape accuacy of siliconacrylate mold was analysed. After UV imprinting process, replication quality and align accuracy was analysed.

  • PDF