• 제목/요약/키워드: UV-damage

검색결과 303건 처리시간 0.029초

Photoprotection by Topical DNA Repair Enzymes

  • Yarosh, Daniel B.
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.186-189
    • /
    • 2002
  • Many of the adverse effects of solar UV exposure appear to be directly attributable to damage to epidermal DNA. In particular, cyclobutane pyrimidine dimers (CPD) may initiate mutagenic changes as well as induce signal transduction responses that lead to a loss of skin immune surveillance and micro-destruction of skin structure. Our approach is to reverse the DNA damage using prokaryotic DNA repair enzymes delivered into skin using specially engineered liposomes. T4 endonuclease V encapsulated in liposomes (T4N5 liposome lotion) enhanced DNA repair by shifting repair of CPD from the nucleotide excision to the base excision repair pathway. Following topical application to humans, increased repair limited UV-induction of cytokines, many of which are immunosuppressive. In a recent clinical study, topical treatment of UV-irradiated human skin with T4N5 liposome lotion reduced the suppression of the nickel sulfate contact hypersensitivity response. Similarly, the photoreactivating enzyme enhances repair by directly reversing CPDs after absorbing activating light. Here also treatment of UV-irradiated human skin with photoreactivating enzyme in liposomes and photoreactivating light restored the response to the contact allergen nickel sulfate. These findings confirm in humans the observation in mice that UV induced suppression of contact hypersensitivity is caused in part by CPDs. We have tested the ability of T4N5 liposome lotion to prevent UV-induced skin cancer in patients with xeroderma pigmentosum (XP), who have an elevated incidence of skin cancer resulting from a genetic defect in DNA repair. Daily use of the lotion for one year in a group of 20 XP patients reduced the average number of actinic keratoses by 68% and basal cell cancers by 30% compared to 9 patients in the placebo control group. Delivery of DNA repair enzymes to skin is a promising new approach to photoprotection.

  • PDF

Effect of UV Radiation on Early Growth of Korean Rice Cultivars(Oryza sativa L.)

  • Choi, Kwan-Sam;In, Jun-Gyo;Kang, Si-Yong;Bae, Chang-Hyu;Lee, Hyo-Yeon
    • 한국작물학회지
    • /
    • 제44권3호
    • /
    • pp.296-301
    • /
    • 1999
  • The concerns on the crop damage by ultraviolet (UV) radiations is increasing owing to the decrease of their absorbing stratospheric ozone in the tropospheric. Cultivar differences on early growth of UV radiation among five Korean rice cultivars, four japonica types and one Tongil type (indica-japonica cross hybrid), were studied. Pot-seeded rice plants were grown under four different radiation conditions, i.e., visible radiation only, visible radiation with supplemented with high or low dose of UV-B (280~320 nm in wavelength) and UV-C (less than 280 nm in wavelength). The inhibitory degree on plant height, shoot and root weight and length of leaf blade and leaf sheath were determined at 40 days after seeding. UV-C showed the most severe inhibitory effect on the degree of biomass gain and leaf growth in most cultivars examined, followed by high UV-B and low UV-B. Among the cultivars used, the Kuemobyeo was the most sensitive cultivar and had not repair or showed resistance ability to continued irradiation of UV radiation. However, Janganbyeo and Jaekeon showed different responses that the elongation of leaf blades was promoted on 2nd and 3rd leaves and inhibited on 4th and 5th leaves but this inhibitory degree was reduced on 6 th and 7th leaves. Such tendency on leaf growth means that both cultivars had low sensitivity and most resistant ability to continued irradiation of UV radiation. While Tongil showed different response to enhanced UV radiation, ie., low UV-B promoted leaf growth but the inhibitory was severely increased by continued irradiation of high UV-B and UV-C, which means that Tongil had high threshold of UV radiation for response as an inhibitory light of plant growth. The results of this study indicate that the differences on sensitivity or resistant to the effects of UV radiation were existed among Korean rice cultivars.

  • PDF

The Important Anti-Apoptotic Role and Its Regulation Mechanism of PTTG1 in UV-Induced Apoptosis

  • Lai, Yongqing;Xin, Dianqi;Bai, Junhai;Mao, Zebin;Na, Yanqun
    • BMB Reports
    • /
    • 제40권6호
    • /
    • pp.966-972
    • /
    • 2007
  • Pituitary tumor transforming gene (PTTG1) is widely detected in many tumors. Increasing evidence reveals that PTTG1 is associated with cell proliferation, cellular transformation and apoptosis. However, the functions of PTTG1, especially its role in DNA damage-induced apoptosis, remain largely unclear. In this report, we used UV irradiation to induce apoptosis in HeLa cells to examine the role of PTTG1 in UV-induced apoptosis by RNAi-mediated knockdown and overexpression of PTTG1. RNAi-mediated knockdown of PTTG1 expression increased and overexpression of PTTG1 decreased the UV-induced apoptosis. Furthermore, UV irradiation decreased PTTG1 mRNA and protein expression. These effects were found to be mediated by JNK pathway. Therefore, PTTG1 had an important anti-apoptotic role in UV-induced apoptosis and this role was mediated by JNK pathway. These results may provide important information for understanding the exact role and the regulation mechanism of PTTG1 in UV-induced apoptosis.

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

폴리올레핀 복합소재의 UV 광열화 특성 (Photodegradation Characterization of Polyolefin Composite)

  • 원종일;신세문;최길영
    • 공업화학
    • /
    • 제20권5호
    • /
    • pp.511-516
    • /
    • 2009
  • 폴리올레핀 복합소재의 UV 광열화 특성을 조사하였다. 열중량분석 결과, 3종의 폴리올레핀 복합소재는 서로 다른 talc 함유량을 가지고 있음을 확인하였다. SAE J1960 규격에 따라 UV 조사된 폴리올레핀 복합소재의 기계적 거동을 관찰하기 위해 인장시험 및 아이조드 충격 시험을 수행하였다. UV 노출 시간이 증가함에 따라 연신율과 저온 충격강도는 급격히 감소하였다. 이는 UV 광열화에 의한 폴리머 분자체인의 절단 및 얽힘 밀도 감소에 따른 탄성력의 감소에 기인한 것으로 보인다. 전자주사현미경 관찰을 통하여 UV 조사 후 표면상에 크랙이나 표면손상은 존재하지 않았지만, UV 노출에 따른 추가적인 talc 입자의 표면 노출을 관찰할 수 있었다. 이러한 talc 입자의 표면 노출은 폴리올레핀 복합소재의 변색 원인으로 추정된다. 적외선분광분석을 통하여, UV 조사된 폴리올레핀 복합소재의 표면상에 광열화가 진행되었음을 확인하였다.

Effects of Hexaconazole on Growth and Antioxidant Potential of Cucumber Seedlings under UV-B Radiation

  • Kim, Tae-Yun;Hong, Jung-Hee
    • 한국환경과학회지
    • /
    • 제21권12호
    • /
    • pp.1435-1447
    • /
    • 2012
  • The present study was conducted to determine the effect of hexaconazole (HEX), a triazole fungicide, on the growth, yield, photosynthetic response and antioxidant potential in cucumber (Cucumis sativus L.) plants subjected to UV-B stress. UV-B radiation and HEX were applied separately or in combination to cucumber seedlings. The growth parameters were significantly reduced under UV-B treatment, however, this growth inhibition was less in HEX treated plants. HEX caused noticeable changes in plant morphology such as reduced shoot length and leaf area, and increased leaf thickness. HEX was quite persistent in inhibiting shoot growth by causing a reduction in shoot fresh and dry weight. HEX noticeably recovered the UV-B induced inhibition of biomass production. Significant accumutation in anthocyanin and flavonoid pigments in the leaves occurred as a result of HEX or UV-B treatments. HEX permitted the survival of more green leaf tissue preventing chlorophyll content reduction and higher quantum yield for photosystemII under UV-B exposure. HEX treatment induced a transient rise in ABA levels in the leaves, and combined application of HEX and UV-B showed a significant enhancement of ABA content which activates $H_2O_2$ generation. UV-B exposure induced accumulation of $H_2O_2$ in the leaves, while HEX prevented UV-B induced increase in $H_2O_2$, indicating that HEX serves as an antioxidant agent able to scavenge $H_2O$ to protect cells from oxidative damage. An increase in the ascorbic acid was observed in the HEX treated cucumber leaves affecting many enzyme activities by removing $H_2O_2$ during photosynthetic processes. The activities of antioxidant enzymes including catalase(CAT), ascorbate peroxidase(APX), superoxide dismutase(SOD) and peroxidase(POD) in the leaves in the presence of HEX under UV-B stress were higher than those under UV-B stress alone. These findings suggest that HEX may participate in the enhanced tolerance to oxidative stress. From these results it can be concluded that HEX moderately ameliolate the effect of UV-B stress in cucumber by improving the components of antioxidant defense system.

인디고 염색제품에 대한 자외선흡수제의 응용효과 (An Aplication Effect of UV-Absorbent on The Indigo Dyed Products)

  • 차옥선;양진숙
    • 한국의류학회지
    • /
    • 제23권6호
    • /
    • pp.909-918
    • /
    • 1999
  • The indigo-dyed blue denim garments are favored not only by young people but also by almost everyone of life, In the early years they were casually worn on most occasions but became universal recently. Such denim garments are treated with various process to give it optimal softness and color contrast of blue and white. The processess can generate photoyellowing and thus the yellowing may damage their appearance and quality. So this study is to find the solutions to reduce the photoyellowing problem. For this prupose sample denim were treated with cellulase fluorescent brightener UV absorbent etc. The results were as follows; The yellowing would be more accelerated by fluorescent brightening. Since the yellowing was reduced by 90% In particular the application of the UV absorbent before using of the fluorescent brightener was most effective. The optimal concentration was 0.5% (o.w.f) and the benzophenone compounds were found most effective for the indigo denim. And reduction effect of yellowing by UV absorbent was lowered with repeated laundering but metal compound treatment on fabric made a removal of UV absorbent by laundering prevented.

  • PDF

법과학 단파자외선이 DNA에 미치는 영향 (Effect of forensic short wavelength UV on DNA)

  • 김아람;김우중;박희연;임시근
    • 분석과학
    • /
    • 제27권3호
    • /
    • pp.147-152
    • /
    • 2014
  • 범죄 현장에서 눈으로 보이지 않는 지문의 위치를 파악하기 위해 254 nm의 단파자외선과 루비스(RUVIS;Reflective Ultraviolet Imaging System, 반사자외선이미징시스템) 장비를 사용하는 것이 매우 효과적이다. 최근 유전자 감식 기술의 발전으로 지문과 같은 극미량의 생체시료에서도 성공적으로 DNA 프로필을 확보할 수 있게 되었지만, 지문 탐색에 사용되는 단파자외선에 의해 DNA가 파괴될 수 있다. 본 연구에서는 일반적으로 가장 많이 사용되고 있는 4 종류의 자외선 광원을 대상으로 자외선 조사 시간과 조사 거리에 따른 DNA 손상 정도를 비교하였다. 단파 자외선을 사용하는 경찰 루비스, SIRCHIE 미니라이트 및 SIRCHIE 루비스의 경우에는 10 cm 거리에서 10초간 조사할 경우 약 50% 정도의 DNA가 손상되었고, 시료와의 거리가 가까울수록, 처리 시간이 길수록 DNA 손상 정도가 증가하였다. 이 장비들을 사건 현장에서 사용할 경우에는 유전자 감식 시료의 DNA에 많은 손상을 가져올 수 있기 때문에 1 m 이상의 거리에서 조사하는 것이 바람직할 것으로 판단되었다. 반면 350 nm의 장파자외선을 사용하는 폴리라이트 장비는 단파 자외선 장비에 비해 DNA 손상 정도가 크지 않았다. 지문 탐색과 유전자감식을 모두 고려한다면, 자외선 광원의 종류에 따라 조사 거리와 조사 시간을 결정하는 것이 필요하다.

Component, Formulation and Regulatory of Sunscreen Materials: A Brief Review

  • Firi Oktavia Hariani;Mohammad Adam Jerusalem;Iqmal Tahir;Maisari Utami;Won-Chun Oh;Karna Wijaya
    • 한국재료학회지
    • /
    • 제33권3호
    • /
    • pp.87-94
    • /
    • 2023
  • Exposure to ultraviolet (UV) light is often associated with skin damage, sometimes very serious, and in recent times has received particular attention as a health risk. As a result, the proper use of sunscreen has long been recommended to protect against skin damage. The continued increase in the use of sunscreen may be linked to increased information about the risk of melanoma and non-melanoma skin cancer caused by prolonged exposure to ultraviolet rays. Natural and harmless materials that block and prevent UV light have emerged as essential household items in the field of skin beauty. New materials need to be considered and evaluated in relation to ultraviolet rays and their harmful effects. This study aims to explain the effect of UV exposure on human skin, the classification of sunscreens, the application of zeolite, nano clay, and LDH in sunscreen formulations, as well as the regulation of this service in various countries around the world.

Pro-Apoptotic Role of the Human YPEL5 Gene Identified by Functional Complementation of a Yeast moh1Δ Mutation

  • Lee, Ji Young;Jun, Do Youn;Park, Ju Eun;Kwon, Gi Hyun;Kim, Jong-Sik;Kim, Young Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.633-643
    • /
    • 2017
  • To examine the pro-apoptotic role of the human ortholog (YPEL5) of the Drosophila Yippee protein, the cell viability of Saccharomyces cerevisiae mutant strain with deleted MOH1, the yeast ortholog, was compared with that of the wild-type (WT)-MOH1 strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The $moh1{\Delta}$ mutant exhibited enhanced cell viability compared with the WT-MOH1 strain when treated with lethal UV irradiation, 1.8 mM MMS, $100{\mu}M$ CPT, heat shock at $50^{\circ}C$, or 1.2 M KCl. At the same time, the level of Moh1 protein was commonly up-regulated in the WT-MOH1 strain as was that of Ynk1 protein, which is known as a marker for DNA damage. Although the enhanced UV resistance of the $moh1{\Delta}$ mutant largely disappeared following transformation with the yeast MOH1 gene or one of the human YPEL1-YPEL5 genes, the transformant bearing pYES2-YPEL5 was more sensitive to lethal UV irradiation and its UV sensitivity was similar to that of the WT-MOH1 strain. Under these conditions, the UV irradiation-induced apoptotic events, such as FITC-Annexin V stainability, mitochondrial membrane potential (${\Delta}{\psi}m$) loss, and metacaspase activation, occurred to a much lesser extent in the $moh1{\Delta}$ mutant compared with the WT-MOH1 strain and the mutant strain bearing pYES2-MOH1 or pYES2-YPEL5. These results demonstrate the functional conservation between yeast Moh1 and human YPEL5, and their involvement in mitochondria-dependent apoptosis induced by DNA damage.