• 제목/요약/키워드: UV-absorption

검색결과 1,096건 처리시간 0.026초

Sonochemical Synthesis of CdSe Nanoparticles from Mixed Aqueous Solution (초음파 화학법에 의한 CdSe 나노 입자의 합성)

  • Sung, Myoung-Seok;Lee, Yoon-Bok;Kim, Yong-Jin;Kim, Young-Seok;Kim, Yang-do
    • Korean Journal of Materials Research
    • /
    • 제16권3호
    • /
    • pp.198-202
    • /
    • 2006
  • Cadmium selenide (CdSe) nanoparticles with the diameter of about 3.4nm have been synthesized from the mixed aqueous solution of distilled water and diethanolamine at room temperature. The cadmium chloride ($CdCl_2$), sodium selenosulfate ($Na_2SeSO_3$) were used as the cadmium and selenium source, respectively. The properties of CdSe nanoparticles were characterized by using transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and UV-Vis measurements. CdSe nanoparticles were analyzed to be cubic phase with the absorption excition peaks between 540 and 600 nm. CdSe nanoparticles also showed red-shifted excition peaks with increasing the sonication time. This paper mainly presents the sonication effects on the formation of CdSe nanoparticles prepared from the mixed aqueous solution of distilled water and diethanolamine.

Properties of Wide-Gap Material for Blue Phosphorescent Light Emitting Device (청색 인광 유기EL 소자를 위한 wide-gap 재료의 제작 및 특성)

  • Chun, Ji-Yun;Han, Jin-Woo;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 및 기술 세미나 논문집 디스플레이 광소자
    • /
    • pp.36-36
    • /
    • 2008
  • Organic light-emitting device (OLED) have become very attractive due to their potential application in flat panel displays. One important problem to be solved for practical application of full-color OLED is development of three primary color (Red, Green and Blue) emitting molecule with high luminous operation. Particularly, the development of organic materials for blue electroluminescence (EL) lags significantly behind that for the other two primary colors. For this reason, Flu-Si was synthesized and characterized by means of high-resolution mass spectro metry and elemental analyses. Flu-Si has the more wide optical band gap (Eg = 3.86) than reference material (Cz-Si, Eg = 3.52 eV). We measured the photophysical and electrochemical properties of Flu-Si. The HOMO-LUMO levels were estimated by the oxidation potential and the onset of the UV-Vis absorption spectra. The EL properties were studied by the device fabricated as a blue light emitting material with FIrpic.

  • PDF

Synthesis and Characterization of Blue Light-Emitting Hyperbranched Poly(Fluorene) (청색 발광 하이퍼브랜치 PF의 합성과 특성 분석에 관한 연구)

  • Ahn, Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제23권9호
    • /
    • pp.701-707
    • /
    • 2010
  • We have synthesized new pure blue-emitting hyperbranched polyfluorene (Hyper-PDHF) through $A_2$ and $B_3$ type monomers via Suzuki coupling polymerization. The weight-average molecular weights ($M_w$) of the Hyper-PDHF was found about 35,000 with polydispersity index as 6.1. The UV absorption peak of the Hyper-PDHF film was at around 335 nm which was far blue shifted than that of linear PDHF film which was found at 380 nm. The pure blue photoluminescene (PL) peak of the Hyper-PDHF was measured at 419 nm as main emission with 397 and 444 nm as shoulder peaks. The Hyper-PDHF showed also higher PL quantum efficiency in solution than linear PDHF (Hyper-PDHF, $\Phi$sol =0.81; PDHF, $\Phi$sol=0.78). The annealed PDHF film (5 hrs on hot plate at $80^{\circ}C$) showed increased shoulder peak emissions and emission color was changed into the green emission. But, Hyper-PDHF film shows almost no excimer emission peak even the film was annealed. The enhanced PL efficiency and no excimer emission of Hyper-PDHF results from the inhibition of excimer formation by the introduction of the hyperbranched system into the polyfluorene backbone.

Spectroscopic characterization of N,N'-bis(salicylidene)pentane-1,3-diamine nickel(II) complex

  • Kim, Gilhoon;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • 제18권2호
    • /
    • pp.74-81
    • /
    • 2014
  • The $N_2O_2$ tetradentate Schiff base ligand, N,N'-bis(salicylidene)pentane-1,3-diamine (Salpn), coupled with 1:2 concentration ratio of 1,3-diaminopentane and salicylaldehyde was used to produce a series of macrocyclic Nikel(II) complexes. In the metal complexation, it was observed that Salpn macrocyclic ligand can adopt more than a metal ion giving an unique multinuclear metal complexes including Ni(II)Salpn and $Ni(II)_3(Salpn)_2$. Characteristic IR ${\upsilon}(M-O)$ peaks for Ni(II)Salpn and $Ni(II)_3(Salpn)_2$ were observed to be $1028cm^{-1}$ and $1024cm^{-1}$, respectively. Characteristic UV-Vis absorption ${\lambda}_{max}$ peaks for $Ni(II)_3(Salpn)_2$ were observed to be 241nm and 401 nm. Structural characterization of $Ni(II)_3(Salpn)_2$ by NMR exhibits that the salicylidene ring moiety has two different resonance signals originated from the magnetically asymmetric diligand and trinuclear bis complex. Complete NMR signal assignments and characterizations elucidating structural features of $Ni(II)_3(Salpn)_2$ were described in detail.

POSSIBLE INVOLVEMENT OF Fe-S CENTERS AS MAJOR ENDOGENOUS PHOTOSENSITIZERS IN HIGH LIGHT-CAUSED LOSS OF MEMBRANE STRUCTURE AND FUNCTION OF MITOCHONDRIA

  • Kim, Chang-Sook;Jung, Jin
    • Journal of Photoscience
    • /
    • 제1권1호
    • /
    • pp.9-14
    • /
    • 1994
  • Exposure of isolated intact mitochondria to near UV to visible light resulted in not only loss of respiration, the most well-documented phenomenon regarding phototoxic effects in the respiring organelles, but also lipid peroxidation of membranes and mitochondrial swelling; these turned out to be O$_2$-dependent and thus prevented by anaerobiosis, enhanced by a partial deuteration of the suspension medium, and suppressed by the presence of a singlet oxygen ($^1O_2$) scavenger. Measurements of the spectral dependence of such detrimental effects of light on mitochondrial structure and function revealed that all the resulting spectra bear a significant resemblance to the action spectrum for photogeneration of $^1O_2$ from mitochondrial membranes, which in turn carries the spectral characteristics of light absorption by mitochondrial Fe-S centers. Futhermore, destructing the Fe-S centers by a mercurial treatment of mitochondria brought about a striking reduction of the light-induced membrane peroxidation and swelling of mitochondria. These results are consistent with the suggestion that the impairment of functional, structural integrity of mitochondria caused by strong irradiation is directly related to the production of $^1O_2$ in mitochondria, photosensitized by the Fe-S centers. This paper also presents kinetic data which indicate that, among various membrane-bound protein systems associated with mitochondrial energy metabolism, the respiratory chain is the primary target for photodamage.

  • PDF

D-A-D type molecules based on dibenzophosphole-chalcogenides and triphenylamine moieties; effects of chalcogenide atoms on their photochemical properties

  • Iijima, Shunsuke;Hori, Keichi;Nakashima, Takuya;Kawai, Tsuyoshi
    • Rapid Communication in Photoscience
    • /
    • 제3권4호
    • /
    • pp.61-63
    • /
    • 2014
  • 3,7-bis(4-(diphenylamino)phenyl)-5-phenyl-5H-benzo[b]phosphinedole 5-sulfide (DBPPS-TPA) and 3,7-bis(4-(diphenylamino)phenyl)-5-phenyl-5H-benzo[b]phosphinedole 5-selenide (DBPPSe-TPA) are newly synthesized D-A-D type molecules based on dibenzophospholes and their physic-chemical properties are studied in comparison with a P=O type compouond, 3,7-bis(4-(diphenylamino)-5-phenyl-5H-benzo[b]phosphinedole 5-oxide (DBPPO-TPA). Fluorescence emission and electrochemical redox properties of these compounds are investigated regarding results of density functional theory (DFT) calculations, X-ray crystallographic structures and UV-vis absorption spectra. These results exhibit systematic variation in optical properties of these compounds having P=O, P=S, and P=Se units. LUMO energy level is systematically modulated with different chalcogenide atoms.

Glycosylation of Protein by Conjugation of Periodate-Oxidized Sugars (과요오드산 산화당에 의한 인공 당단백질의 조제)

  • Ann, Yong-Geun
    • Korean Journal of Food Science and Technology
    • /
    • 제31권1호
    • /
    • pp.62-67
    • /
    • 1999
  • Periodate-oxidized soluble starch and maltohexaose, maltotetraose, maltose, and glyceraldehyde reacted with sweet potato ${\beta}-amylase$, wheat ${\beta}-amylase$, aldolase, bovine serum albumin, catalase, carboxypeptidase, ferritin and pronase. Electrophoretical mobility of modified proteins was different from that of native proteins, and modified proteins were stained with periodic acid-Schiff while native proteins did not stain. This results means that oxidized sugars attached on proteins. This bond is based on the Schiffs base between CHO group of oxidized sugar and ${\varepsilon}-NH_2$ group of lysine of protein. There is no changed UV absorption spectrum of sweet potato ${\beta}-amylase$ modified with oxidized soluble starch, in comparison with native enzyme.

  • PDF

Nonvolatile Memory and Photovoltaic Devices Using Nanoparticles

  • Kim, Eun Kyu;Lee, Dong Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.79-79
    • /
    • 2013
  • Quantum-structures with nanoparticles have been attractive for various electronic and photonic devices [1,2]. In recent, nonvolatile memories such as nano-floating gate memory (NFGM) and resistance random access memory (ReRAM) have been studied using silicides, metals, and metal oxides nanoparticles [3,4]. In this study, we fabricated nonvolatile memories with silicides (WSi2, Ti2Si, V2Si) and metal-oxide (Cu2O, Fe2O3, ZnO, SnO2, In2O3 and etc.) nanoparticles embedded in polyimide matrix, and photovoltaic device also with SiC nanoparticles. The capacitance-voltageand current-voltage data showed a threshold voltage shift as a function of write/erase voltage, which implies the carrier charging and discharging into the metal-oxide nanoparticles. We have investigated also the electrical properties of ReRAM consisted with the nanoparticles embedded in ZnO, SiO2, polyimide layer on the monolayered graphene. We will discuss what the current bistability of the nanoparticle ReRAM with monolayered graphene, which occurred as a result of fully functional operation of the nonvolatile memory device. A photovoltaic device structure with nanoparticles was fabricated and its optical properties were also studied by photoluminescence and UV-Vis absorption measurements. We will discuss a feasibility of nanoparticles to application of nonvolatile memories and photovoltaic devices.

  • PDF

Optical and dielectric properties of SrMoO4 powders prepared by the combustion synthesis method

  • Vidya, S.;John, Annamma;Solomon, Sam;Thomas, J.K.
    • Advances in materials Research
    • /
    • 제1권3호
    • /
    • pp.191-204
    • /
    • 2012
  • In this paper, we report on the obtention of nanocrystalline $SrMoO_4$ synthesized through modified combustion process. These powders were characterized by X-ray diffraction, Fourier Transform Raman and Infrared Spectroscopy. These studies reveal that the scheelite-type $SrMoO_4$ crystallizes in tetragonal structure with I41/${\alpha}$ (N#88) space group. Transmission electron microscopy image shows that the nanocrystalline $SrMoO_4$ powders have average size of 18 nm. The optical band gap determined from the UV-V is absorption spectra for the as prepared sample is 3.7 eV. These powders showed a strong green photoluminescence emission. The samples are sintered at a relatively low temperature of $850^{\circ}C$. The morphology of the sintered pellet is studied with scanning electron microscopy. The dielectric constant and loss factor values obtained at 5 MHz for a well sintered $SrMoO_4$ pellet has been found to be 9.50 and $7.5{\times}10^{-3}$ respectively. Thus nano $SrMoO_4$ is a potential candidate for low temperature co-fired ceramics and luminescent applications.

Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying (기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성)

  • Woo S.H.;Kim W.W.;Kim S.J.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • 제12권4호
    • /
    • pp.266-272
    • /
    • 2005
  • Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.