• 제목/요약/키워드: UV-VIS-NIR spectroscopy

검색결과 56건 처리시간 0.076초

백색 5K Au-Ag-In 합금재의 인듐 첨가량에 따른 물성 변화 (Properties of the White 5K Au-Ag-In Alloys with Indium Contents)

  • 송정호;송오성
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.381-385
    • /
    • 2017
  • In order to replace 14K white gold alloys, the properties of 5K white gold alloys (Au20-Ag80) were investigated by changing the contents of In (0.0-10.0 wt%). Energy dispersive X-ray spectroscopy (EDS) was used to determine the precise content of alloys. Properties of the alloys such as hardness, melting point, color difference, and corrosion resistance were determined using Vickers Hardness test, TGA-DTA, UV-VIS-NIR-colorimetry, and salt-spray tests, respectively. Wetting angle analysis was performed to determine the wettability of the alloys on plaster. The results of the EDS analysis confirmed that the Au-Ag-In alloys had been fabricated with the intended composition. The results of the Vickers hardness test revealed that each Au-Ag-In alloy had higher mechanical hardness than that of 14K white gold. TGA-DTA analysis showed that the melting point decreased with an increase in the In content. In particular, the alloy containing 10.0 wt% In showed a lower melting temperature (> $70^{\circ}C$) than the other alloys, which implied that alloys containing 10.0 wt% In can be used as soldering materials for Au-Ag-In alloys. Color difference analysis also revealed that all the Au-Ag-In alloys showed a color difference of less than 6.51 with respect to 14K white gold, which implied a white metallic color. A 72-h salt-spray test confirmed that the Au-AgIn alloys showed better corrosion resistance than 14K white gold alloys. All Au-Ag-In alloys showed wetting angle similar to that of 14K white gold alloys. It was observed that the 10.0 wt% In alloy had a very small wetting angle, further confirming it as a good soldering material for white metals. Our results show that white 5K Au-Ag-In alloys with appropriate properties might be successful substitutes for 14K white gold alloys.

18K 레드 골드 정함량 솔더의 In 첨가에 따른 물성변화 (Properties of the 18K Red Gold Solder Alloys with Indium Contents)

  • 송정호;송오성
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.89-94
    • /
    • 2018
  • The properties of 18 K red gold solder alloys were investigated by changing the content of In up to 10.0 wt% in order to replace the hazardous Cd element. Cupellation and energy dispersive X-ray spectroscopy (EDS) were used to check the composition of each alloy, and FE-SEM and UV-VIS-NIR-Colormeter were employed for microstructure and color characterization. The melting temperature, hardness, and wetting angle of the samples were determined by TGA-DTA, the Vickers hardness tester, and the Wetting angle tester. The cupellation result confirmed that all the samples had 18K above 75.0wt%-Au. EDS results showed that Cu and In elements were alloyed with the intended composition without segregation. The microstructure results showed that the amount of In increased, and the grain size became smaller. The color analysis revealed that the proposed solders up to 10.0 wt% In showed a color similar to the reference 18 K substrate like the 10.0 wt% Cd solder with a color difference of less than 7.50. TGA-DTA results confirmed that when more than 5.0 wt% of In was added, the melting temperature decreased enough for the soldering process. The Vickers hardness result revealed that more than 5.0 wt% In solder alloys had greater hardness than 10.0 wt% Cd solder, which suggested that it was more favorable in making a wire type solder. Moreover, all the In solders showed a lower wetting angle than the 10.0 wt% Cd solder. Our results suggested that the In alloyed 18 K red gold solders might replace the conventional 10.0 wt% Cd solder with appropriate properties for red gold jewelry soldering.

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • 제17권4호
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.

Photovoltaic Properties of Perovskite Solar Cells According to TiO2 Particle Size

  • Kim, Kwangbae;Lee, Hyeryeong;Song, Ohsung
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.282-287
    • /
    • 2019
  • The photovoltaic properties of $TiO_2$ used for the electron transport layer in perovskite solar cells(PSCs) are compared according to the particle size. The PSCs are fabricated and prepared by employing 20 nm and 30 nm $TiO_2$ as well as a 1:1 mixture of these particles. To analyze the microstructure and pores of each $TiO_2$ layer, a field emission scanning electron microscope and the Brunauer-Emmett-Teller(BET) method are used. The absorbance and photovoltaic characteristic of the PSC device are examined over time using ultraviolet-visible-near-infrared spectroscopy and a solar simulator. The microstructural analysis shows that the $TiO_2$ shape and layer thicknesses are all similar, and the BET analysis results demonstrate that the size of $TiO_2$ and in surface pore size is very small. The results of the photovoltaic characterization show that the mean absorbance is similar, in a range of about 400-800 nm. However, the device employing 30 nm $TiO_2$ demonstrates the highest energy conversion efficiency(ECE) of 15.07 %. Furthermore, it is determined that all the ECEs decrease over time for the devices employing the respective types of $TiO_2$. Such differences in ECE based on particle size are due to differences in fill factor, which changes because of changes in interfacial resistance during electron movement owing to differences in the $TiO_2$ particle size, which is explained by a one-dimensional model of the electron path through various $TiO_2$ particles.

저온 원자층증착법으로 제조된 ZnO/TiO2 나노이층박막의 물성 연구 (Properties of ZnO/TiO2 Bilayer Thin Films with a Low Temperature ALD Process)

  • 노윤영;한정조;유병관;송오성
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.498-504
    • /
    • 2011
  • We examined the microstructure and optical properties of crystallized ~30 nm-ZnO/~10 nm amorphous $TiO_2$ nano bilayered films as nano electrodes were deposited at extremely low substrate temperatures of $150-210^{\circ}C$. The bilayered films were deposited on silicon substrates with 10 cm diameters by ALD (atomic layer deposition) using DEZn (diethyl zinc(Zn(C2H5)2)) and TDMAT (tetrakis dimethyl-amid $titanium(Ti(N(CH_3)_2)_4)$ as the ZnO and $TiO_2$ precursors, respectively, and $H_2O$ as the oxidant. The microstructure, phase, and optical properties of the bilayered films were examined by FE-SEM, TEM, XRD, AES, and UV-VIS-NIR spectroscopy. FE-SEM and TEM showed that all bilayered films were deposited very uniformly and showed crystallized ZnO and amorphous $TiO_2$ layers. AES depth profiling showed that the ZnO and $TiO_2$ films had a stoichiometric composition of 1:1 and 1:2, respectively. These bilayered films have optical absorption properties in a wide range of ultraviolet wavelengths, 250-390 nm, whereas the single ZnO and $TiO_2$ films showed an absorption range of 350-380nm.

Effect of the catalyst deposition rates on the growth of carbon nanotubes

  • Ko, Jae-Sung;Choi, In-Sung;Lee, Nae-Sung
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.264-264
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) were grown on a Si wafer by using thermal chemical vapor deposition (t-CVD). We investigated the effect of the catalyst deposition rate on the types of CNTs grown on the substrate. In general, smaller islands of catalyst occur by agglomeration of a catalyst layer upon annealing as the catalyst layer becomes thinner, which results in the growth of CNTs with smaller diameters. For the same thickness of catalyst, a slower deposition rate will cause a more uniformly thin catalyst layer, which will be agglomerated during annealing, producing smaller catalyst islands. Thus, we can expect that the smaller-diameter CNTs will grow on the catalyst deposited with a lower rate even for the same thickness of catalyst. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. The catalyst layers were. coated by using thermal evaporation. The deposition rates of the Al and Fe layers varied to be 90, 180 sec/nm and 70, 140 sec/nm, respectively. We prepared the four different combinations of the deposition rates of the AI and Fe layers. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of $H_2$ as a carrier gas and 20 sccm of $C_2H_2$ as a feedstock at 95 torr and $810^{\circ}C$. The substrates were subject to annealing for 20 sec for every case to form small catalyst islands prior to CNT growth. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, UV-Vis NIR spectroscopy, and atomic force microscopy. The fast deposition of both the Al and Fe layers gave rise to the growth of thin multiwalled CNTs with the height of ${\sim}680\;{\mu}m$ for 10 min while the slow deposition caused the growth of ${\sim}800\;{\mu}m$ high SWCNTs. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of $113.3{\sim}281.3\;cm^{-1}$, implying the presence of SWCNTs (or double-walled CNTs) with the tube diameters 2.07~0.83 nm. The Raman spectra of the as-grown SWCNTs showed very low G/D peak intensity ratios, indicating their low defect concentrations.

  • PDF