• Title/Summary/Keyword: UV sterilization

Search Result 92, Processing Time 0.028 seconds

A Study on the Sterilization Effect of Ballast Water according to the Combination of Types of Treatment Apparatus (선박평형수 처리장치의 조합에 따른 살균효과에 관한 연구)

  • Kang, Ah-Young;Kim, Sang-Pil;Song, Ju-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.412-417
    • /
    • 2015
  • The purpose of this study is to treat the ballast water by shear stress without an environmental pollution and to find out the optimal treatment conditions. The ballast water problem is issued up as the trade activated and the cargos mobilized. To improve this problem, International Marine Organization(IMO) make the rule about the ballast water treatment with specific restrictions. Although many countries have been studying about the ballast water treatment technology, there is almost no technology that can treat the microorganisms under $50{\mu}m$ without any secondary pollution. In this study, we tried to treat ballast water by applying shear stress as the physical treatment for the sterilization and tried to find out the optimal conditions including the 100% sterilizing rate and the best economic condition.

Sterilization of Seawater for the Ballast Water Management System (선박평형수 관리시스템을 위한 해수 살균법)

  • YUN, YONGSUP;CHOI, JONGBEOM;KANG, JUN;LEE, MYEONGHOON
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.172-172
    • /
    • 2016
  • The International Maritime Organization(IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Forty ballast water treatment systems were granted final approval. A variety of techniques have been developed for ballast water treatment including UV treatment, indirect or direct electrolysis, ozone treatment, chemical compounds and plasma-arc method. In particular, using plasma and ozone nano-bubble treatments have been attracted in the fields. However, these treatment systems have a problem such as remained toxic substance, demand for high power source, low efficiency, ets. In this paper, we present our strilization results obtained from membrane type electrolytic-reduction treatment system The core of an electrolysis unit is an electrochemical cell, which is filled with pure water and has two electrodes connected with an external power supply. At a certain voltage, which is called critical voltage, between both electrodes, the electrodes start to produce hydrogen gas at the negatively biased electrode and oxygen gas at the positively biased electrode. The amount of gases produced per unit time is directly related to the current that passes through the electrochemical cell. From the results, we could confirm the sterilization effect of bacteria such as S. aureus, E. Coli and demonstrate the mechanism of sterilization phenomena by electrolytic-reduction treatment system.

  • PDF

The contactless elevator button using the electrostatic capacity (정전 용량을 이용한 비접촉식 엘리베이터 버튼)

  • Bang, Gul-Won
    • Journal of Industrial Convergence
    • /
    • v.19 no.6
    • /
    • pp.67-72
    • /
    • 2021
  • The elevator installed in the building consists of an elevator call button and an input button for selection to the target floor. The elevator button is input only when the elevator user directly presses it. Such passenger input can be infected with an infectious disease due to contamination of the button. A non-contact button is required as a means for solving this problem, which detects the proximity of an object by applying a capacitive method. It implements a function of measuring the body's body temperature by attaching an infrared heat sensor, and provides a sterilization function of a button by attaching a UV-LED. A button was selected, a body temperature was measured through an infrared temperature measurement sensor, and UV-LED was turned on and sterilized when there was no user. The contactless elevator button is expected to be effective in preventing infectious diseases as it can prevent infection of viruses carrying infectious diseases and can detect body temperature to select positive patients of CIVID 19.

Development of Clean Water Supplying System for Greenhouse Cultivation and Convenience Water (I) - Development of the FDA System - (시설용수 및 영농편의용수 공급시스템 개발 (I) - FDA 시스템 개발 -)

  • Lee, Kwang-Ya;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.95-100
    • /
    • 2009
  • The water purification systems have been hardly used for agricultural purpose due to their complicated compositions and high costs for farmers, while only simple filtrations have been applied to irrigation systems in order to prevent the system from clogging problems. This study therefore developed a clean water supplying system, the Filter-Disinfection-Adsorption (FDA) system, especially for greenhouse cultivation of where low quality of water is available. This system has also been produced for providing convenience water to farmers in the areas of no water supply service systems for the purpose of washing their bodies or agricultural machineries after farm work. The FDA system consists of three stages of purification processes with an integral module, including disk and teflon filtrations and Ultraviolet (UV) sterilization processes. Indoor experiments were undertaken with a trial product of the FDA system to test its performance. The operation test of the process was performed as well as the condition check of each item including UV module, filters, control panel, pump, valves, etc. The results shows good performance of each test with no critical problems. The initial and maintenance costs were also analysed with other purification systems. From the comparisons, the FDA system found to be very economical and easy to use.

A Numerical Analysis of the Abatement of VOC with Different Photocatalytic Honeycomb Filters (광촉매 필터형상에 따른 휘발성 유기화합물의 제거에 관한 수치해석적 연구)

  • 류무성;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study has been numerically conducted to investigate the removal efficiency of Volatile Organic Compound (VOC) for different photocatalytic honeycomb filters. Recently, the photocatalysis is being applied to air-cleaner, air-conditioner and vacuum-cleaner with the capability of air-purification, sterilization and antibiosis. However, photocatalysis is less efficient than other methods for removing VOC except in the case of low concentration. So far most of studies have focused on an improvement of the photocatalytic materials, but this study have placed emphasis on the improvements of shape of photocatalytic honeycomb filter. UV irradiation, concentration profile and pressure drop have been investigated for different cross sections of filters and for different filter lengths. Light intensity is dropped sharply with increasing distance from the UV-lamp, and becomes very low in the middle of the filters. Since photocatalytic reaction rate is a function of light intensity, VOC concentration gradient might be small in the middle of long filters. Thus, most of reaction have risen within only three times of dimensionless axial distance. These results can be used effectively for the design of advanced photocatalytic honeycomb filters.

Hydroponic Cultivation Using an Ultraviolet LED (자외선 광원을 이용한 살균 모듈 개발)

  • Youm, Sungkwan;Jeong, Heewon;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.569-570
    • /
    • 2021
  • Hydroponic cultivation is of considerable interest to the production of high-quality green plants. However, establishing the planting operating systems in hydroponic cultivation may result in chronic problems, such as the reproduction of harmful bacteria throughout the circulating culture fluid. Extensive research has been conducted on using an ultraviolet sterilization system to prevent culture fluid contamination. In this study, the proposed module, using UV-C LEDs that emit wavelengths between 270 and 285 nm, was designed along with a sensor and controller. The module was set to emit 300, 500, and 700 mW, for different culture fluid flow rates, to investigate its capacity to eliminate Escherichia coli, Clavibacter michiganensis, Pseudomonas cichorii, and Fusarium oxysporum.

  • PDF

Antimicrobial Agents and Applications on Polymeric Materials (고분자재료에 대한 항균성 물질과 적용)

  • Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.20 no.3
    • /
    • pp.39-56
    • /
    • 2008
  • A wide variety of materials including aldehydes, cationic agents, alcohols, peroxygens, phenols and chlorinated phenols, metal ions are being employed as biocides. Among three levels for biocidal functions (sanitization, disinfection and sterilization), disinfection is an enough level for antimicrobial textiles. In terms of antimicrobial agents for textile applications, quaternary ammonium salts (QAS), chitosan, metal and metal salts, N-halamine based materials are developed with numerous research and the positive ions of those materials may result in disinfection of microorganisms. Photocatalysts, especially titanium dioxide (titania) produces the hydroxyl radical (${\cdot}\;OH$) which causes inactivation of microorganisms after UV radiation, have been used for antimicrobial applications.

A Study of the Technical Treatment within an Environmental Appetency for the Ballast Water

  • Nam, Chung-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1313-1323
    • /
    • 2004
  • In accordance with adoption of new convention for the control of ship's ballast water at the diplomatic conference held in London Feb, 2004, every country has to regulate the ballast water and deposit matters. When this Resolution comes into effect in 2009, all vessels engaged in international voyage must have ballast water control program, ballast water records, equipments which are suitable to the standard of exchange and performance for the ballast water. This study estimates objectively their performances, merits and demerits of the ballast water treatment technique and exchanging techniques for safe operation of ships. It is desirable to design an equipment to control the ballast water using the brush-type vacuum suction nonstop reverse cleaning system to overcome the clogging phenomenon and the direct disc filtering to maximize filtering area for the optimum process considering biological availabilities. It will be expected to protect against marine pollution and to maintain clean sea if it is secured to develop new ballast water treatment techniques. And it will also be expected to cope with the Resolution and each regulation of the developed countries from the ballast water.

High Power Factor Electronic Ballast for Ultraviolet Germicidal Lamp (자외선 살균 램프용 고역률 전자식 안정기에 관한 연구)

  • Kang, Bum-Suk;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1202-1205
    • /
    • 2000
  • Germicidal lamps efficiently emit a large amount of ultraviolet rays 253.7nm which have excellent germicidal effect. The lamps are primarily useful for sterilization of air, the surface of various materials and water or liquid. In this paper, analysis of the charge pump power factor correction inverter for driving a 65W UV lamp and electrical characteristics of the lamp are discussed. The operation of the inverter circuit. in which the lamp is included as a load, is analyzed. Experimental results of the inverter circuit are also presented.

  • PDF

Preparation and Characterization of ClO2 Self-Releasing Smart Sachet (이산화염소 자체 방출 스마트 샤쉐의 제조 및 특성 연구)

  • Junseok Lee;Hojun Shin;Sadeghi Kambiz;Jongchul Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Chlorine dioxide (ClO2) is widely used for post-harvest sterilization treatment. However, there are limitations in the retail application of ClO2 due to difficulties in handling, expensive facilities, and safety concerns. Therefore, it is necessary to develop a ClO2 technology that can be easily applied and continuously released for a long period. In this study, a series of ClO2 self-releasing sachets were developed. First, poly(ether-block-amide) (PEBAX) and polyethylene-glycol (PEG) composite films containing different ratios of citric acid (CA) were prepared using the solution casting method. The as-prepared PEBAX/PEG-CA composite films were evaluated using FT-IR, DSC, and TGA to confirm chemical structure and thermal properties. Subsequently, PEBAX/PEG-CA composite films were designed in the form of a sachet and NaClO2 powder was transferred into the sachet to achieve a ClO2 self-releasing system. The ClO2-releasing behavior of the sachet was investigated by measuring the release amount of the gas using UV-vis. The release amount of ClO2 increased with increasing CA contents owing to the existence of higher protons (trigger) in the polymer matrix. Further, ClO2 gas was released for a longer time. Therefore, the as-prepared smart sachet can be tuned according to applications and packaging sizes to serve an optimal sterilization effect.