• Title/Summary/Keyword: UV emission

Search Result 627, Processing Time 0.033 seconds

Partially Folded States of Mutant Ubiquitin in Mild Denaturing Conditions

  • Park, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1567-1572
    • /
    • 2009
  • Conformational change of ubiquitin variant with valine to alanine mutation at sequence position 26 was studied by varying solvent pH. Fluorescence emission spectra indicated that this variant ubiquitin has some residual structures in acidic and basic solution as compared to denaturant-induced unfolded state. Far-UV circular dichroic spectra indicated that the base-denatured state had more secondary structure than the acid-denatured state. Near-UV circular dichroic spectra indicated that the aromatic side-chains were in the relatively more rigid environment in the base-denatured state than those in the acid-denatured state. Although it appears that the more tertiary structure present in the base-denatured state, refolding reactions measured by stopped-flow fluorescence device suggest that both the acid- and base-denatured states occur before the major folding transition state. The acid- and base-denatured states are considered to reflect the early event of protein folding process.

Experimental analysis of damage in short-fiber-reinforced composite waste polyethylene terephthalate as a pile foundation material

  • Jang, Hongseok;Seo, Segwan;Cho, Daesung
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.147-157
    • /
    • 2022
  • This study assessed the compressive and tensile strengths and modulus of elasticity of waste polyethylene terephthalate (PET) using the ASTM standard tests. In addition, short carbon and glass fibers were mixed with waste PET to examine the improvements in ductility and strength during compression. The bonding was examined via field-emission scanning electron microscopy. The strength degradation of the waste PET tested under UV was 40-50%. However, it had a compressive strength of 32.37 MPa (equivalent to that of concrete), tensile strength of 31.83 MPa (approximately ten times that of concrete), and a unit weight of 12-13 kN/m3 (approximately half that of concrete). A finite element analysis showed that, compared with concrete, a waste PET pile foundation can support approximately 1.3 times greater loads. Mixing reinforcing fibers with waste PET further mitigated this, thereby extending ductility. Waste PET holds excellent potential for use in foundation piles, especially while mitigating brittleness using short reinforcing fibers and avoiding UV degradation.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF

Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application (수열합성법으로 합성된 산화아연 나노 구조 박막의 광촉매적 응용)

  • Shinde, N.M.;Nam, Min Sik;Patil, U.M.;Jun, Seong Chan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.97-101
    • /
    • 2016
  • ZnO has nanostructured material because of unique properties suitable for various applications. Amongst all chemical and physics methods of synthesis of ZnO nanostructure, the hydrothermal method is attractive for its simplicity and environment friendly condition. Nanostructure ZnO thin films have been successfully synthesized on fluorine doped tin oxide (FTO) substrate using hydrothermal method. A possible growth mechanism of the various nanostructures ZnO is discussed in schematics. The prepared materials were characterized by standard analytical techniques, i.e., X-ray diffraction (XRD) and Field-emission scanning electron microscopy (SEM). The XRD study showed that the obtained ZnO nanostructure thin films are in crystalline nature with hexagonal wurtzite phase. The SEM image shows substrate surface covered with nanostructure ZnO nanrod. The UV-vis absorption spectrum of the synthesized nanostructure ZnO shows a strong excitonic absorption band at 365 nm which indicate formation nanostructure ZnO thin film. Photoluminescence spectra illustrated two emission peaks, with the first one at 424 nm due to the band edge emission of ZnO and the second broad peak centered around 500 nm possibly due to oxygen vacancies in nanostructure ZnO. The Raman measurements peaks observed at $325cm^{-1}$, $418cm^{-1}$, $518cm^{-1}$ and $584cm^{-1}$ indicated that nanostrusture ZnO thin film is high crystalline quality. We trust that nanostructure ZnO material can be effectively will be used as a highly active and stable phtocatalysis application.

Luminescence Characteristics of Sr3MgSi2O8:Eu Blue Phosphor for Light Emitting Diodes (LED용 Sr3MgSi2O8:Eu청색 형광체의 발광특성)

  • 최경재;박정규;김경남;김창해;김호건
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.573-577
    • /
    • 2004
  • We have synthesized a Eu$^{2+}$-activated Sr$_3$MgSi$_2$ $O_{8}$ blue phosphor and investigated an attempt to develop blue LEDs by combining it with a InGaN blue LED chip (Len=405 nm). The InGaN-based Sr$_3$MgSi$_2$ $O_{8}$:Eu LED Lamp shows two bands at 405 nm and 460 nm. The 405 nm emission band is due to a radiative recombination from a InGaN active layer. This 405 nm emission was used as an optical transition of the Sr$_3$MgSi$_2$ $O_{8}$:Eu phosphor. The 460 m emission band is ascribed to a radiative recombination of Eu$^{2+}$ impurity ions in the Sr$_3$MgSi$_2$ $O_{8}$ host matrix. As a consequence of a preparation of W blue LED Lamp using the Sr$_3$MgSi$_2$ $O_{8}$:Eu blue phosphor, the highest luminescence efficiency was obtained at the ration of epoxy/blue phosphor(1/0,202). At this time, the CIE chromaticity was x=0.1417 and y=0.0683.

H$\gamma$LINE SPECTRUM OF INTERMEDIATE POLARS

  • Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • Kim & Beuermann (1995, 1996)have developed a model for the propagation of X-rays from the accreting white dwarfthrough the infalling material and the re-emission of the energy deposited by photo-absorption in the optical (and UV) spectral range. By using this model, we calculate the profiles of the $H_{\gamma}$ emission-line spectrum of intermediate polars. Photoabsorption of X-ray by the infalling material is the dominant process in forming the observed energy-dependent rotational modulation of the X-ray flux. X-ray and optical modulations are sensitive to model parameters in different ways. In principle, these dependencies allow us to obtain improved insight into the accretion geometry of the intermediate polars. We present results of our calculations and compare them with the $H{\beta}$ line spectrum(Kim & Beuermann 1996).

  • PDF

A STEADY FLOW MODEL OF A MAGNETIC FLUX TUBE CONSTRAINED TO OBSERVED DIFFERENTIAL EMISSION MEASURE

  • BONG SU-CHAN;CHAE JONGCHUL;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.159-163
    • /
    • 2000
  • We have investigated one dimensional steady flow model of a typical magnetic flux tube in the solar transition region constrained to observed Differential Emission Measure (DEM) for the average quiet-Sun deduced by Raymond & Doyle (1981) with a flux tube geometry conforming to Doppler shifts of UV lines measured by Chae, Yun & Poland (1998). Because local heating and filling factor in the transition region are not well known, we considered two extreme cases, one characterized by the filling factor= 1 ('filled-up model') and the other set by local heating=0 ('not-heated model'). We examined how much the heating is required for the flux tube by recomputing a model through adjustment of the filling factor in such a way that 'not-heated model' accounts for the observed DEM.

  • PDF

PDR Model : Test and fit observed data Obtained by Herschel PACS

  • Yun, Hyeong-Sik;Lee, Jeong-Eun;Lee, Seokho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.81.1-81.1
    • /
    • 2014
  • We utilized a 2-D PDR code developed by Lee et al. (2014) to explore the observed OH line fluxes toward embedded protostars. This 2-D PDR code combines self-consistently the FUV radiative transfer, gas-energetics, chemistry, and line radiative transfer. We modeled two sources, GSS30-IRS1 and Elias29, which show conspicuous line emission in the Herschel/PACS wavelength range. The physical and chemical structure for a given embedded source was derived by fitting the PACS CO line fluxes. After exploring various parameter spaces, we conclude that IR-pumping effect either by the central IR source and dust in-situ is insignificant for OH emission, unlike previous studies. We here present a possible solution for the observed OH fluxes, which require a high OH abundance and temperature at the inner-part of the UV heated cavity wall.

  • PDF

High Luminance $Zn_2SiO_4$:Mn phosphors Prepared by Homogeneous Precipitation Method

  • Jung, Ha-Kyun;Sohn, Kee-Sun;Sung, Bu-Young;Park, Hee-Dong
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • Manganese-doped $Zn_2SiO_4$ phosphors well known as a green emitter with high luminescence efficiency were prepared by the homogeneous precipitation method, and their photoluminescence properties under vacuum-ultraviolet (VUV) excitation were investigated. $Zn_2SiO_4$:Mn phosphors obtained by this method have exhibited a high luminance of property and a spherical shape of particles. In particular, the green emission intensity of zinc orthosilicate prepared as containing around 2 mole% of manganese was much stronger than that of the commercial $Zn_2SiO_4$:Mn phosphor, while the decay time was longer. However, addition of $Al^{3+}$ and $Li^+$ into $Zn_2SiO_4$:Mn composition has significantly diminished the decay time of the phosphor without much degradation of the emission intensity.

  • PDF

A WISE/GALEX View of Red Sequence Galaxies

  • Ko, Jong-Wan;Hwang, Ho-Seong;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.37.1-37.1
    • /
    • 2012
  • We present mid-IR (MIR) and near-UV (NUV) properties of red sequence galaxies defined by optical color-magnitude relation. We use the Wide-field Infrared Survey Explorer (WISE) preliminary released data matched with the SDSS DR7/GALEX GR6. The red sequence galaxies with little emission lines show a wide spread of MIR (3.4um-12um) colors, implying a variety of MIR excess emission. We focus on the properties of the red sequence galaxies with MIR excess, comparing the properties of post-starburst galaxies to trace how galaxies migrate to the red sequence.

  • PDF