• Title/Summary/Keyword: UV absorbance

Search Result 414, Processing Time 0.023 seconds

Degradation of synthetic dye in water by solution plasma process

  • Panomsuwan, Gasidit;Morishita, Tetsunori;Kang, Jun;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.888-893
    • /
    • 2016
  • In this study, the solution plasma process was utilized with the aim of degrading synthetic dyes in water at atmospheric pressure. The experiments were conducted in a batch-type reactor consisting of a symmetric wire-wire electrode configuration with rhodamine B (RhB) as the target synthetic dye. The effects of the plasma treatment time and initial dye concentration on the RhB degradation were investigated by monitoring the change in absorbance of RhB solutions. The RhB solutions turned lighter in color and finally colorless with prolonged plasma treatment time, indicating the destruction of dye molecules. The RhB solutions were found to have degraded, following the first-order kinetic process. However, for high initial RhB concentrations, another kinetic process or factor seems to play a dominant role at the initial degradation stage. The fitted first-order rate constant decreased as the initial concentration increased. This result suggests that the degradation behavior and kinetic process of the RhB solution strongly depends on its initial concentration. The RhB degradation is considered to be due to a combination of factors, including the formation of chemically oxidative species, as well as the emission of intense UV radiation and high-energy electrons from the plasma. We believe that the solution plasma process may prove to be an effective and environment-friendly method for the degradation or remediation of synthetic dye in wastewater.

Kinetic Study for Aquation of $cis-[Co(en)_2(NH_3)Cl]^{2+}$ in $Hg^{2+}$ Aqueous Solution ($Hg^{2+}$수용액에서 $cis-[Co(en)_2(NH_3)Cl]^{2+}$의 아쿠아반응에 대한 속도론적 연구)

  • Byung-Kak Park;Gil-Jun Lee;Jae-Weon Lee;Joo-Sang Lim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.227-232
    • /
    • 1988
  • A kinetic study was made to determine the mechanism of the aquation of $cis-[Co(en)_2(NH_3)Cl]^{2+}\;in\;Hg^{2+}$ aqueous solution. The progress of reaction was followed UV/vis-spectrophotometrically by a measurement of the absorbance at a specific wave length (530nm) of $cis-[Co(en)_2(NH_3)Cl]^{2+}$ as a function of time. The experimental results have shown that the reaction rate is dependent upon the concentration of $Hg^{2+}$ that act as a catalyst. And it was found that the overall reaction proceed with second order, first order with respect to Co(III) complex and $Hg^{2+}$. Activation parameters, ${\Delta}H^{\neq}\;and\;{\Delta}S^{\neq}$, were obtained as 12.9 kcal/mol and -19.3 e.u., respectively. We have proposed a plausible reaction mechanism which is consistent with the observed rate equation.

  • PDF

HPLC Determination and Pharmacokinetic Profile of Warfarin in Korean Subjects (와파린의 HPLC 분석법 및 한국인에서의 약동학적 특징)

  • Bae, Jung-Woo;Kim, Hyun-Kyung;Yang, Sang-In;Kim, Ji-Hong;Kim, Kyung-Hye;Jang, Choon-Gon;Park, Young-Seo;Sohn, Uy-Dong
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.134-139
    • /
    • 2005
  • Warfarin is a widely used oral anticoagulant agent used to treat thromboembolic disease. The purpose of this study was to develop the efficient assay method of warfarin sodium i n human plasma and to assess the pharmacokinetic profile of the warfarin in healthy Korean volunteers. The pharmacokinetics of warfarin administered orally was evaluated after a dose of 10 mg. Warfarin in plasma was assayed using a specific HPLC method with UV absorbance at 304 nm. AUC was 46.33${\pm}9.95{\mu}g/ml.hr$, $C_{max}$ $1.22{\pm}0.22{\mu}g/ml, $T_{max}$$2.50{\pm}1.41$ hr and half-life $43.49{\pm}4.33$ hr. $T_{max}$ was slightly shorter than that in Caucasian (3~9 hr), whereas the half-life was longer than that in Caucasian (10~45 hr, mean: 36 hr). These results suggest that warfarin may have a longer duration in Korean than in Caucasian.

Evaluation of Treatment Efficiency using non-Control Indicator in Drinking Water Treatment Process (미규제 수질인자를 이용한 정수공정의 효율성 평가)

  • Lee Jae-Young;Kang Mee-A
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.153-159
    • /
    • 2006
  • The discharges of time, technology and finance was increased and it was difficult to use water resources effectively by serious water pollutions. Thus the main aim of this work was focused on effectiveness of water treatment process using non-controlled indicators such as UV absorbance($E_{260}$) and particle counts that provided analytical results with simple and rapid. The soluble aluminum was increased by the increase of aluminum doses for turbidity removals It means that the water quality was not controlled by only turbidity monitoring cause maximum turbidity removal did not guarantee minimum residual aluminum in an aluminum-based coagulation. E removal efficiency appeared to be the promising indicator for monitoring the effectiveness of the water quality process such as coagulation and nanofiltration membranes for arsenic(V). On the basis of the particle monitoring, it was also found that the particle counts could be used very useful for changing the coagulants in real water treatments.

Fluorescence Properties of Size Fractions of Dissolved Organic Matter Originated From Different Sources (생성 기원에 따른 용존 자연유기물질 분자량별 형광특성 비교)

  • Hur, Jin;Park, Min-Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.482-489
    • /
    • 2007
  • Fluorescence properties and carbohydrate content were investigated using ultrafiltrated size fractions of dissolved organic matters (DOM) originated from different sources. The materials included a treated sewage, an algal organic matter, and a soil leachate, all of which are major constituents of dissolved organic matter in a typical urban river. Four different size fractions were separated from the three sources of each DOM. The size distribution demonstrated that a higher molecular weight fraction was more present in soil leachate compared to two other source DOMs. A higher content of carbohydrates was observed in the following order - algal DOM > treated sewage > soil leachate. A wide range of specific UV absorbance was observed from size fractions of a single source DOM, indicating that aromatic carbon structures are heterogeneously distributed within one source of DOM. The structural heterogeneity was the most pronounced for the soil leachate. The fluorescence index ($F_{450}/F_{500}$) of the treated sewage was similar to that (2.0) typically obtained from autochthonous DOM, suggesting that the treated sewage exhibited autochthonous organic matter-like properties. No protein-like fluorescence intensities were observed for all of the soil leachate size fractions whereas they were observed with two other source DOMs. Based upon the fluorescence peak ratios from fluorescence excitation-emission matrix (EEM), two discrimination indices could be suggested to distinguish three different source DOMs. It is expected that the suggested discrimination indices will be useful to predict the sources of DOM in a typical urban river affected by treated sewage.

Active metabolites in rat bile after intravenous injection of [3H] pteroylglutamic acid (랫드에 있어서 [3H] pteroylglutamic acid 의 정맥주사후(靜脈注射後) 담즙중(膽汁中) 활성대사물(活性代謝物)에 관한 연구(硏究))

  • Shin, Ho-chul;Shimoda, Minoru;Kokue, Eiichi
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.4
    • /
    • pp.605-609
    • /
    • 1993
  • Active metabolites in rat bile after an intravenous injection of $[^3H]$ pteroylglutamic acid(PteGlu)were studies using high-performance liquid chromatography(HPLC). Predominant four radioactive metabolites and parent compound PteGlu were detected on the chromatogram of HPLC with liquid scintillation counting system. These metabolites were identified as tetrahydrofolate, 10-formyltetrahydrofolate, 5-methyltetrahydrofolate and para-aminobenzoyl glutamate. The identification of active folate metabolites was based on the consistency of retention time profiles and hydrodynamic voltammograms which were obtained by HPLC with the electrochemical detection system, and characteristics of UV absorbance spectra obtained by HPLC with photodiode array detection system.

  • PDF

The Effect of Natural Mordants on the Silk Fabrics Dyed with Green Tea Extracts(I) - Analysis of Natural Mordants and the Effect on Color Changes - (녹차 추출액 염색 견포의 천연 매염제 처리 효과(I)-천연 매염제 분석 및 색상 변화를 중심으로-)

  • 최석철;정진순;천태일
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.15-22
    • /
    • 1999
  • This study investigated the mordanting effect of natural mordants such as camellia ash, bean chaff ash and pyrolignite of iron(Iron(II) Acetate) on silk fabrics dyed with green tea extracts. Experimental variables include the conditions of extraction and dyeing, and types of natural mordants. Inorganic ion contents In natural mordants were analysed by Induced Coupled Plasma Atomic Emission Spectrometer. In the ash Al, Fe, Si and Mn were in % unit, Cr and Ni were detected in ppm unit, and in the aqueous extracts of the ash all the metal ions were in ppm unit. On the other hand, fairly high content of Al(2.13% ) in camellia ash extract and Fe(7.91% ) in the aqueous extracts of pyrolignite iron were detected. The absorbance intensity of green tea extracts in UV-Visible spectrum increased with the temperature and time of extraction. The maximum absorption wavelength of the extracts appeared at 272.5nm and 210.5nm. The US values of silk fabrics dyed with green tea extracts were increased with temperature and time of dyeing. Surface color of silk fabric dyed with green tea extracts was 9.1YR, but it was changed from 7.9YR to 7.5YR by camellia ash extract and 7.4YR to 6.4YR by bean chaff ash extract with increase in mordant concentration. Pre-mordanted and post-mordanted fabrics with pyrolignite of iron were changed from 1.4YR to 1.1R and 7.2P to 4.2P, respectively.

  • PDF

In vivo evaluation of infrared LASER mediated drug release of PLA-tetracycline complexes coated gold nanoparticle-titania nanotubes with mouse (마우스를 이용한 PLA - tetracycline 복합체 코팅 금 나노입자 - 티타니아 나노튜브의 적외선 레이저 유도 약물용출 생체 내 평가)

  • Moon, Kyung-Suk;Jeoung, Chan-Gwoun;Bae, Ji-Myung;Oh, Seunghan
    • Korean Journal of Dental Materials
    • /
    • v.44 no.1
    • /
    • pp.33-41
    • /
    • 2017
  • In this study, we prepared PLA-tetracycline complexes coated gold nanoparticle-titania nanotubes and estimated their infrared LASER mediated drug release in the abdominal region of ICR mouse. The results of UV-Vis spectrophotometer showed the highest absorbance at the wavelength of 530 nm and 809 nm indicating the existence of gold nanoparticles. EDX analysis showed that the amounts of gold nanoparticle coated on titania nanotubes were approximately 3.62-36.5 wt%. In vivo test resulted that the tetracycline release value of experimental groups (6.5 ng/mL) was higher than that of control group (5.8 ng/mL) on the condition of 30 minutes of LASER irradiation. Therefore, it is expected that PLA-tetracycline complexes coated gold nanoparticle-titania nanotubes have the feasibility in the field of infrared remote controlled drug device and overcome the limitation of location and time of drug release in dental implant.

Comparison of TiO2 and ZnO catalysts for heterogenous photocatalytic removal of vancomycin B

  • Lofrano, Giusy;Ozkal, Can Burak;Carotenuto, Maurizio;Meric, Sureyya
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.213-223
    • /
    • 2018
  • Continuous input into the aquatic ecosystem and persistent structures have created concern of antibiotics, primarily due to the potential for the development of antimicrobial resistance. Degradation kinetics and mineralization of vancomycin B (VAN-B) by photocatalysis using $TiO_2$ and ZnO nanoparticles was monitored at natural pH conditions. Photocatalysis (PC) efficiency was followed by means of UV absorbance, total organic carbon (TOC), and HPLC results to better monitor degradation of VAN-B itself. Experiments were run for two initial VAN-B concentrations ($20-50mgL^{-1}$) and using two catalysts $TiO_2$ and ZnO at different concentrations (0.1 and $0.5gL^{-1}$) in a multi-lamp batch reactor system (200 mL water volume). Furthermore, a set of toxicity tests with Daphnia magna was performed to evaluate the potential toxicity of oxidation by-products of VAN-B. Formation of intermediates such as chlorides and nitrates were monitored. A rapid VAN-B degradation was observed in ZnO-PC system (85% to 70% at 10 min), while total mineralization was observed to be relatively slower than $TiO_2-PC$ system (59% to 73% at 90 min). Treatment efficiency and mechanism of degradation directly affected the rate of transformation and by-products formation that gave rise to toxicity in the treated samples.

Novel Antibacterial, Cytotoxic and Catalytic Activities of Silver Nanoparticles Synthesized from Acidophilic Actinobacterial SL19 with Evidence for Protein as Coating Biomolecule

  • Wypij, Magdalena;Ostrowski, Maciej;Piska, Kamil;Wojcik-Pszczola, Katarzyna;Pekala, Elzbieta;Rai, Mahendra;Golinska, Patrycja
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1195-1208
    • /
    • 2022
  • Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.