• Title/Summary/Keyword: UV Locking

Search Result 2, Processing Time 0.016 seconds

Design of Automatic Assembly & Evaluation System for Phone Camera Module (폰 카메라 모듈 자동 조립.평가시스템 설계)

  • Song J.Y.;Lee C.W.;Ha T.W.;Jung Y.W.;Kim Y.G.;Lee M.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.71-72
    • /
    • 2006
  • In this study, automatic assembly and evaluation system fer phone camera module is conceptually designed. The designed core(Auto focus & UV curing, Image Test) equipments adopts a clustering mechanism and compactible structure using index table for minimum tact time. Using a ball screw actuator and absolute encoder in each axis, we can verifies the repeatability and position accuracy of system within ${\pm}3{\mu}m$. In result of simulation test, the proposed system is expected up to 30% in productivity than manual operation.

  • PDF

The Flexible Characteristic of Reversible and Robust Nanohair Fastener

  • Park, Seung-Ho;Yoon, Young-Seok;Lee, Dong-Woo;Lee, Dong-Ik;You, Kyoung-Hwan;Pang, Chang-Hyun;Suh, Kahp-Yang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.432-432
    • /
    • 2011
  • Dry adhesion caused by Nanoscale contact comes up to important scientific issue. Herein, we introduce bendable nanohairy locking fastener system with high shear strength and mechanically flexible backing. The polymeric patches like velcro are composed of an array of straight nanohairs with 100 nm diameter and $1{\mu}m$ height. To fabricate high aspect vertical nanohairs, we used UV molding method with appropriately flexible and rigid polyurethane acrylate material on PET substrate. Two identical nanohairy patches are easily merged and locked each other induced by van der Waals force. Because nanohairs can be arrayed with high density ${\sim}4{\times}10^8/cm^2$, we can obtain high shear adhesion force on flat surface (~22 N/$cm^2$). Furthermore, we can obtian nanohairy locking system with maximum shear adhesion ~48 N/$cm^2$ of curved surface due to flexibility of PET substrate. We confirm the tendency that shear adhesion force increases, as radius of curvature increases.

  • PDF