• Title/Summary/Keyword: UV/Vis. absorption wavelength

Search Result 72, Processing Time 0.03 seconds

Magnetic and Photo-catalytic Properties of Nanocrystalline Fe Doped $TiO_2$ Powder Synthesized by Mechanical Alloying

  • Uhm, Y.R.;Woo, S.H.;Lee, M.K.;Rhee, C.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.955-956
    • /
    • 2006
  • Fe-doped $TiO_2$ nanopowders were prepared by mechanical alloying (MA) varying Fe contents up to 8.0 wt.%. The UV-vis absorption showed that the UV absorption for the Fe-doped powder shifted to a longer wavelength (red shift). The absorption threshold depends on the concentration of nano-size Fe dopant. As the Fe concentration increased up to 4 wt.%, the UV-vis absorption and the magnetization were increased. The benefical effect of Fe doping for photocatalysis and ferromagnetism had the critical dopant concentration of 4 wt.%. Based on the UV absorption and magnetization, the dopant level is localized to the valence band of $TiO_2$.

  • PDF

Identification of Buza by Detecting Aconitine-type Alkaloids (Aconitine 류 알칼로이드의 검출에 의한 부자류 생약의 확인)

  • Eom, Dong-Ok;Ban, Tae-Hwan
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.243-247
    • /
    • 1999
  • After aconitine-type alkaloids have been isolated from the crude drug "Buza" as the precipitate, they could be identified with colour test, UV/Vis. absorption wavelength, TLC. The presence of aconitine-type alkaloids are confirmed by the reaction with the Reineke ion, $[Cr(NH_3)_2(SCN)_4]^{1+}$, and TCR ion, $[Co(SCN)4]^{2-}$, to produce the white precipitate or one of the containing from blue to yellowish blue. It is based on the formation of complex compounds by aconitine-type alkaloids with Reineke and TCR reagent. The method has been found to be simple, convenient and suitable for routine identification of aconitine-type alkaloids, related basic compounds, the crude drug "Buza" processed from the roots of certain Aconitum spp. plants(Ranunculaceae).

  • PDF

The identification of amethyst origins by using FT-IR, UV-VIS spectrum analysis (ET-IR, UV-VIS 분광분석을 통한 자수정의 산지감별)

  • Yoon Si-Nae;Yon Seog-Joo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.25-31
    • /
    • 2006
  • Many amethysts of different origins such as South America, Aftrica, and Asia were compared. According to ICP-AES analysis, the colorizing elements were Fe, Cr, Cu, and Co. Amethysts from South America showed higher concentrations of the elements. UV- VIS analysis showed that both natural and synthetic amethysts were characterized by the higher absorption at 350 nm and 550 nm wavelength. The natural amethysts had lower permeability than that of the synthetic amethysts. According to FT-IR analysis, the synthetic amethysts were distinguished from the natural amethysts in that they had a typical absorption band of $3543cm^{-1}$. The amethyst from South America showed strong absorption bands of $3584cm^{-1}\;and\;3435cm^{-1}$, and African amethyst had absorption bands of $3299cm^{-1}\;and\;3196cm^{-1}$. $3381cm^{-1}$ absorption band was shown strongly for Asian origins.

Encapsulation of 2,4-Dihydroxybenzophenone into Dodecylbenzenesulfonate Modified Layered Double Hydroxide for UV Absorption Properties

  • Li, Shifeng;Shen, Yanming;Liu, Dongbin;Fan, Lihui;Wu, Keke
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.392-396
    • /
    • 2014
  • New organic-inorganic composite of 2,4-dihydroxybenzophenone (BP-1) encapsulation into dodecylbenzenesulfonate (DBS) modified layered double hydroxide (LDH) was successfully prepared. The surface, structural, thermal and absorption properties of the BP-1/DBS-LDH nanohybrid was characterized by BET analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TG) and diffuse reflectance UV-Vis absorbance spectra (DRUV-vis). The interlayer configuration of composite and the adsorption mechanism of BP-1 on MgAl-DBS-LDH were discussed. It was suspected that DBS anions located in the form of monolayer arrangement with a $75^{\circ}$ anti parallel angle between dodecylbenzenesulfonate chain axis. The diffuse reflectance UV-Vis absorbance results revealed that the UV absorbing wavelength of BP-1/DBS-LDH evidently extends to about 400 nm, which shows that the BP-1/DBS-LDH has the potential application as a UV absorber.

Preparation and Characterization of Cy3 Dye for LCD Color Filter (LCD Color Filter용 Cy3 염료의 제조 및 특성 연구)

  • Lee, Sang Dong;Hyun, Dong Kyoun;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.35-39
    • /
    • 2016
  • In this research, we focused on the improvement of cy3 dye's characteristics for LCD color filter. Solubility and thermal stability are main characteristics of dyes for LCD color filter. We performed experiment to change counter cation of cy3 dyes with alkoxy substituent for these purposes. These cy3 dyes (1b~5b) were prepared through the synthetic procedure of three steps. The synthesized new cy3 dyes were charaterized by using NMR, FT-IR, UV/Vis spectroscopy, and TGA. These cy3 dyes showed purple color and maximum absorption wavelength (${\lambda}_{max}$) in the range of 578~590 nm in UV/Vis spectrum. We confirmed that solubility and thermal stability of cy3 dyes were dependent on the structure of counter cation. Cy3 dyes with alkoxy substituent have good solubility in organic solvents such as dichloromethane, methanol, and acetone. Especially, Cy3 dye with 4-nitrobenzyl counter cation (5b) gave excellent solubility characteristics.

Synthesis and Photoluminescent Properties of Silaspirotropylidene (Silaspirotropylidene의 합성 및 광학적 특성)

  • Kwon, Yonghee
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.215-218
    • /
    • 2009
  • A silaspirotropylidene has been obtained from the reaction of the lithium salt of tetraphenylsilole dianion with 2 equiv of diphenylcyclopropene, followed by quenching with Me3SiCl. Silaspirotropylidene exhibits an unusual optical property its optical property was characterized by UV-vis and fluorescence spectroscopy. Absorption wavelength maxima of silaspirotropylidene was 420 nm. silaspirotropylidene displayed an emission band at 550 nm with excitation wavelength of 420 nm.

  • PDF

A Chemometric Aided UV/Vis Spectroscopic Method for Kinetic Study of Additive Adsorption in Cellulose Fibers

  • Chal, Xin-Sheng;Zhou, Jinghong;Zhu, Hongxiang;Huang, Xiannan
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.137-140
    • /
    • 2006
  • This paper describes a technique combining chemometrics with UV spectroscopy for the determination of the concentra tions of two tissue additives (i.e., wet strength and softening agents) in a cellulose fiber containing solution. In single as ent solutions, the concentration of the additive can be measured by UV spectroscopy at the wavelength where the species having absorption. For a binary (i.e., containing two additives) solution system, the spectral characterization is very complicated. However, if aided by a chemometrical calibration technique, each additive in the binary solution can be quantified simultaneously. The present method is very rapid and simple, it can easily perform a continuous measurement in the changes in the additives' concentration after fiber addition, and therefore this becomes a valuable tool for the adsorption kinetics study of chemical additives onto the cellulose fibers. The time-dependent adsorption behaviors of the wet-strength, softening agent, and their both on fiber were also presented.

  • PDF

Influence of Reducing Agents and Additives on the Synthesis of ZnSe Nanoparticles (ZnSe 나노분말 합성에 미치는 환원제와 첨가제의 영향)

  • Back, Geum Ji;Lee, Da Gyeong;Lee, Min Seo;Song, Ha Yeon;Hong, Hyun Seon
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.233-240
    • /
    • 2020
  • Nano-sized ZnSe particles are successfully synthesized in an aqueous solution at room temperature using sodium borohydride (NaBH4) and thioglycolic acid (TGA) as the reducing agent and stabilizer, respectively. The effects of the mass ratio of the reducing agent to Se, stabilizer concentration, and stirring time on the synthesis of the ZnSe nanoparticles are evaluated. The light absorption/emission properties of the synthesized nanoparticles are characterized using ultraviolet-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and particle size analyzer (PSA) techniques. At least one mass ratio (NaBH4/Se) of the reducing agent should be added to produce ZnSe nanoparticles finer than 10 nm and to absorb UV-vis light shorter than the ZnSe bulk absorption wavelength of 460 nm. As the ratio of the reducing agent increases, the absorption wavelengths in the UV-vis curves are blue-shifted. Stirring in the atmosphere acts as a deterrent to the reduction reaction and formation of nanoparticles, but if not stirred in the atmosphere, the result is on par with synthesis in a nitrogen atmosphere. The stabilizer, TGA, has an impact on the Zn precursor synthesis. The fabricated nanoparticles exhibit excellent photo-absorption/discharge characteristics, suggesting that ZnSe nanoparticles can be alloyed without the need for organic solutions or high-temperature environments.

Synthesis and Their Properties of (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass Composites by Sol-Gel Process (Sol-Gel법을 이용한 (0.8PPV+0.2DMPPV)/Silica Glass, Borosilicate Glass 복합체의 합성과 그 특성)

  • 이병우;김병호;윤영권;한원택
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.993-1001
    • /
    • 1997
  • The (0.8PPV+0.2DMPPV) copolymer and silica/borosilicate composites were synthesized by sol-gel process. The organic-inorganic hybrid solution was prepared by using of (0.8PPV+0.2DMPPV) copolymer precursor solution as a raw material for organic components and TEOS and TMB for glass components. Then by drying the solution in vacuum at 5$0^{\circ}C$ for 7days and subsequent heat treatment in vacuum at 15$0^{\circ}C$~30$0^{\circ}C$ for 2h~72h with heating rate of 0.2$^{\circ}C$/min and 1.8$^{\circ}C$/min, the organic-inorganic composites were synthesized. Microstructural evolution of the composites was characterized by DSC, IR spectrocopy, UV/VIS spectroscopy, and TEM. Elimination of the polymer precursor and degradation of the polymer were observed by DSC and Si-O and trans C=C absorption peaks were identified by IR spectra. The polymer was found to be successfully incorporated into the glass matrix and it was confirmed by the absorption peaks from the polymer in the UV/VIS spectra and the TEM results. The absorption peak of the composites was found to shift toward short wavelength side compared to that of the pure polymer and the amount of the blue shift increased with increasing the heat treatment temperature and heat treatment time and with decreasing the heating rate.

  • PDF

Visible-photoresponsive Nitrogen-Doped Mesoporous TiO2 Films for Photoelectrochemical Cells

  • Bae, Jae-Young;Yun, Tae-Kwan;Ahn, Kwang-Soon;Kim, Jae-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.925-928
    • /
    • 2010
  • Nitrogen-doped $TiO_2$ ($TiO_2$:N) nano-particles with a pure anatase crystalline structure were successfully synthesized through the hydrolysis of $TiCl_4$ in an ammonia aqueous solution. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), $N_2$-sorption, and UV-vis diffuse reflectance spectra (UV-vis DRS) techniques. The absorption edge of nitrogen-doped $TiO_2$ shifted into the visible wavelength region. The photoelectrochemical (PEC) performances were investigated for the $TiO_2$ mesoporous electrodes doped with different nitrogen concentrations. The $TiO_2$:N electrodes exhibited much higher PEC responses compared to the pure $TiO_2$ electrode because of the significantly enhanced visible-photoresponsibility of the $TiO_2$:N electrodes.