• Title/Summary/Keyword: UV/IR detector

Search Result 16, Processing Time 0.025 seconds

Analysis of Medicinal Plants in Cosmetics(I) Determiantion of Korean Angelica Extract and Cnidium Rhizome Extract in bath Essence (화장품중 생약성분의 분석(I) 육제중의 당귀 및 천궁추출액의 함량분석)

  • 이보섭;김진우
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.16 no.1
    • /
    • pp.30-39
    • /
    • 1990
  • Angelica gigas extract and Cnidium of ficinale extract in Bath essence were determined by high performance liquid chromatography with a UV detector by use of Bondapak C-18 column. Decursin and Ligustilide were used as indicator ingredient for analysis of Angelica gigas extract and Cnidium of ficinale extract. Each indicator ingredient was isolated from each plant and purified using silver-ni-trate treated silica column. Their structure were conformed with IR, NMR and HPLC. The recoveries of Angelica gigas extract and Cnidium officinale extract added to Bath essence sample were 96.5-109.5% and 112-115%.

  • PDF

Imaging Performance Analysis of an EO/IR Dual Band Airborne Camera

  • Lee, Jun-Ho;Jung, Yong-Suk;Ryoo, Seung-Yeol;Kim, Young-Ju;Park, Byong-Ug;Kim, Hyun-Jung;Youn, Sung-Kie;Park, Kwang-Woo;Lee, Haeng-Bok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.174-181
    • /
    • 2011
  • An airborne sensor is developed for remote sensing on an aerial vehicle (UV). The sensor is an optical payload for an eletro-optical/infrared (EO/IR) dual band camera that combines visible and IR imaging capabilities in a compact and lightweight package. It adopts a Ritchey-Chr$\'{e}$tien telescope for the common front end optics with several relay optics that divide and deliver EO and IR bands to a charge-coupled-device (CCD) and an IR detector, respectively. The EO/IR camera for dual bands is mounted on a two-axis gimbal that provides stabilized imaging and precision pointing in both the along and cross-track directions. We first investigate the mechanical deformations, displacements and stress of the EO/IR camera through finite element analysis (FEA) for five cases: three gravitational effects and two thermal conditions. For investigating gravitational effects, one gravitational acceleration (1 g) is given along each of the +x, +y and +z directions. The two thermal conditions are the overall temperature change to $30^{\circ}C$ from $20^{\circ}C$ and the temperature gradient across the primary mirror pupil from $-5^{\circ}C$ to $+5^{\circ}C$. Optical performance, represented by the modulation transfer function (MTF), is then predicted by integrating the FEA results into optics design/analysis software. This analysis shows the IR channel can sustain imaging performance as good as designed, i.e., MTF 38% at 13 line-pairs-per-mm (lpm), with refocus capability. Similarly, the EO channel can keep the designed performance (MTF 73% at 27.3 lpm) except in the case of the overall temperature change, in which the EO channel experiences slight performance degradation (MTF 16% drop) for $20^{\circ}C$ overall temperate change.

Fire Detection Performance Experiment of the Water Jet Nozzle Position Control Type Automatic Fire Extinguishing Facility for Road Tunnels (도로터널용 방수노즐 위치제어형 자동소화설비의 화재감지성능실험)

  • Kim, Chang-Yong;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.85-91
    • /
    • 2019
  • This study evaluated the fire detection performance of an automatic fire extinguishing system for road tunnels, which combines flame wavelength detection technology with flame image detection technology. This fusion technique to improve the fire detection capability can reduce the damage caused by the fire suppression by locating the fire source in the fire and discharging the pressurized water only at the fire source. Experiments were conducted to determine the position of a fire source when a $70cm{\times}70cm$ target was placed at a distance of 15 m, 20 m, 25 m, 30 m, and 35 m, respectively, in a situation where there is a flame and smoke in a tunnel. The performance of the ultraviolet and triple wavelength infrared (IR3) sensors was attenuated due to the interference of thick smoke. In addition when the flame was blocked by thick smoke, the image sensor sensed the smoke and emitted a fire signal.

A Study on the Metabolism of Carbon Disulfide by Isolated Rat Liver Perfusion (적출 흰쥐 간 관류법에 의한 이황화탄소 대사에 관한 연구)

  • Cho, Young Bong;Bae, Mun Joo;Choi, Hong Soon;Roh, Jae Hoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.202-208
    • /
    • 1996
  • The purposes of this study are the identification and determination of metabolites in the isolated rat liver perfusate of carbon disulfide by two-dimentional thin-layer chromatography and high performance liquid chromatography for understanding the metabolism of carbon disulfide. 2-Thio-thiazolidine-4-carboxylic acid(TTCA) was synthesized by the reaction of carbon disulfide and cysteine, and confirmed by two-dimentional thin-layer chromatography, high performance liquid chromatography, UV spectroscopy, and IR spectroscopy. The absorbance of UV detector for the simultaneous determination of TTCA and thiocarbamide was 254 nm although their maximum spectra were 273 nm and 237 nm, respectively. Two kinds of the developing solvent in the two-dimentional thin-layer chromatography were 2-butanol : 80% HCOOH : $H_2O$ (7 : 2 : 1) as the first developing solvent and 2-propanol : $H_2O$ (4 : 1) as the second developing solvent. After perfusion of carbon disulfide ($8274.23{\mu}mol$), the amount of TTCA and thiocabamide of the perfusate(100 ul) were $12.02-16.4{\mu}mol$ and $5.25-8.15{\mu}g$, respectively. The mean amount of them were $14.08{\mu}mol$ and $6.41{\mu}mol$ respectively, and the former was 2.20 times greater than the latter. For conforming the mechanism of formations of TTCA and thiocarbamide in vivo, we have to clarify whether the reactions between carbon disulfide and ammonia, ammonium salts, amides, cysteine, cystine, or proteins will be formed in vitro.

  • PDF

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF

Photocatalytic activity of $TiO_2$ on nano-diamond powder prepared by Atomic Layer Deposition

  • Kim, Kwang-Dae;Dey, Nilay Kumar;Seo, Hyun-Ook;Kim, Dong-Wun;Nam, Jong-Won;Sim, Chae-Won;Jeong, Myung-Geun;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.425-425
    • /
    • 2011
  • The photocatalytic decomposition of toluene gas was investigated with $TiO_2$ on nano-diamond powder (NDP) under UV irradiation. Atomic layer deposition (ALD) was used for the growth of $TiO_2$ on the NDP. The structure and surface properties of catalysts were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The photocatalytic activity for the toluene decomposition was evaluated by measuring the concentration change of toluene and $CO_2$ gas with gas chromatography (GC)-flame ionization detector (FID) system. The photocatalytic activities of $TiO_2$/NDP catalysts were compared with that of P-25. The rate of initial photocatalytic decomposition of toluene for the $TiO_2$/NDP catalysts was relatively lower when compared to P-25. The photocatalytic activity of P-25 was rapidly decreased with time, whereas, the deactivation of $TiO_2$/NDP catalysts was less pronounced. Therefore, as the reaction time increased, the photocatalytic activity of $TiO_2$/NDP catalysts became higher than that of P-25. The intermediates such as benzaldehyde or benzoic acid, etc were more easily adhered to the active site on the P-25 surface during reaction, resulting in easier deactivation of P-25. These results could be confirmed using FT-IR spectroscopy. We suggest that the NDP used as substrate can reduce the deactivation of $TiO_2$ on the surface.

  • PDF