• 제목/요약/키워드: UV/$H_2O_2$

Search Result 923, Processing Time 0.029 seconds

A study on the fabrication and efficeiency enhancement of flexible Dye-Sensitized Solar Cell(DSSC) using Nano Particle Deposition System(NPDS) and UV laser treatment (나노 입자 적층 시스템과 UV 레이저를 이용한 유연기판 염료감응형 태양전지의 제작과 효율 향상에 대한 연구)

  • Choi, J.O.;Ahn, S.H.;Lee, G.Y.;Kim, C.S.;Kim, D.H.;Lee, H.T.;Park, J.I.;Lee, C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.789-790
    • /
    • 2012
  • PDF

Treatment of highly concentrated organic wastewater by high efficiency $UV/TiO_{2}$ photocatalytic system (고효율 자외선/광촉매 시스템을 이용만 고농도 유기성 폐수처리)

  • Kim, Jung-Kon;Jung, Hyo-Ki;Son, Joo-Young;Kim, Si-Wouk
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.83-89
    • /
    • 2008
  • Food wastewater derived from the three-stage methane fermentation system developed in this lab contained high concentration organic substances. The organic wastewater should be treated through advanced wastewater treatment system to satisfy the "Permissible Pollutant Discharge Standard of Korea". In order to treat the organic wastewater efficiently, several optimum operation conditions of a modified $UV/TiO_{2}$ photocatalytic system have been investigated. In the first process, wastewater was pre-treated with $FeCl_{3}$. The optimum pH and coagulant concentration were 4.0 and 2000mg/L, respectively. Through this process, 52.6% of CODcr was removed. The second process was $UV-TiO_{2}$ photocatalytic reaction. The optimum operation conditions for the system were as follows: UV lamp wavelength, 254 nm; wastewater temperature, $40^{\circ}C$; pH 8.0; and air flow rate, 40L/min, respectively. Through the above two combined processes, 69.7% of T-N and 70.9% of CODcr contained in the wastewater were removed.

Photocatalytic Degradation of Methylene Blue by CNT/TiO2 Composites Prepared from MWCNT and Titanium n-butoxide with Benzene

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.651-657
    • /
    • 2008
  • In this study, CNT/$TiO_2$ composites were prepared using surface modified Multiwall carbon nanotube (MWCNT) and titanium n-butoxide (TNB) with benzene. The composites were characterized by nitrogen adsorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), FT-IR spectra, and UV-vis absorption spectroscopy. The UV radiation induced photoactivity of the CNT/$TiO_2$ composites was tested using a fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in an aqueous solution. Finally, it can be considered that the MB removal effect of the CNT/$TiO_2$ composites is not only due to the adsorption effect of MWCNT and photocatalytic degradation of $TiO_2$, but also to electron transfer between MWCNT and $TiO_2$.

Improved Luminescence Properties of Polycrystalline ZnO Annealed in Reduction Atmosphere

  • Chang, Sung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.3
    • /
    • pp.251-256
    • /
    • 2011
  • The luminescence properties of polycrystalline ZnO annealed in reducing ambience ($H_2/N_2$) have been studied. An effective quenching of green luminescence with enhanced UV emission from polycrystalline ZnO is observed for the reduced ZnO. The variations of the UV and green luminescence band upon reduction treatment are investigated as a function of temperature in the range between 20 and 300 K. Upon annealing treatment in reducing ambience, the optical quality of polycrystalline ZnO is improved. The UV to green intensity ratio of sintered ZnO approaches close to zero (~0.05). However, this ratio reaches more than 13 at room temperature for polycrystalline ZnO annealed at $800^{\circ}C$ in reducing ambience. Furthermore, the full width at half maximum (FWHM) of the UV band of polycrystalline ZnO is reduced compared to unannealed polycrystalline ZnO. Electron paramagnetic resonance (EPR) measurements clearly show that there is no direct correlation between the green luminescence and oxygen vacancy concentration for reduced polycrystalline ZnO.

Decomposotion of EtOH and Oxidation of H2S by using UV/Photocatalysis System (UV/Photocatalysis 시스템을 이용한 EtOH의 분해 및 H2S의 산화)

  • Kim, Jin-Kil;Kim, Sung-Su;Hong, Sung-Chang;Lee, Eui-Dong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.297-302
    • /
    • 2013
  • Enhancement of photocatalytic activity of UV/photocatalysis was carried out to oxidize the gaseous $H_2S$ in a tubular reactor coated with photocatalyst of sol type $TiO_2$. EtOH was used as the standard material to select the photocatalyst, and it was confirmed that the reactor activity was dependent on the coated surface characteristics. The selected photocatalytic reactor, which coated with STS-01, showed about 80% conversion when the gas linear velocity was 0.01 m/s and relative humidity was 40%. However, the conversion level of the reaction decreased significantly with increasing gas linear velocity. Pt was loaded on the photocatalyst to enhance and maintain the performance of the reactor, which enhanced the conversion level of $H_2S$ more than 95% under the same experimental condition.

Preparation of Carbon-$TiO_2$ Composites by Using Different Carbon Sources with Titanium n-Butoxide and Their Photocatalytic Activity (여러 가지 탄소 전구체와 TNB를 이용하여 탄소-$TiO_2$ 복합체를 제조 및 그들의 광촉매 특성)

  • Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • We used activated carbon (AC), activated carbon fiber (ACF) and multi-walled carbon nanotube (MWCNT) as carbon sources and titanium n-butoxide as titanium source to prepare carbon-$TiO_2$ composites. For characterization their properties, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area, X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) were used. And the photoactivity of the carbon-$TiO_2$ composites, under UV irradiation, was tested using the fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in aqueous solution. After UV irradiation for a certain time, the concentration of MB solution was determined by UV-vis absorption spectroscopy.

Photodecomposition Characteristics of Tetrabromobisphenol A (TBBPA) by Ultraviolet (UV-A) Irradiation (Ultraviolet-A (UV-A) 조사에 의한 Tetrabromobisphenol A (TBBPA)의 광분해 반응 특성)

  • Jang, Seok-Won;Han, Sang-Kuk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.2
    • /
    • pp.124-130
    • /
    • 2013
  • Of all the brominated flame retardants (BFRs), TBBPA has the largest production volume (50% of the BFRs in current use). It is interest to investigate how they may degrade, because of it can pose an environmental hazard. By using UV-A (${\lambda}=352nm$ ), we have found that the UV-A irradiation increased the photodecomposition reaction rate of TBBPA in an intensity-dependent manner. We also observed 2,6-dibromo-p-benzosemiquinone radical ($a_{2H}=2.36G$, g = 2.0056) generated from TBBPA by reaction with singlet oxygen ($^1O_2$). On the other hand, when an aqueous preparation of HA was irradiated in the presence of TBBPA, the typical spectrum of semiquinone radical was detected by electron spin resonance (ESR). And then, we have found that the photodecomposition rate of TBBPA is decreased in depend on HA concentration. Radical formation and the reactive rate of TBBPA were inhibited by sodium azide used as a singlet oxygen quencher. Therefore we report that a similar $^1O_2$-induced oxidation can be initiate in aqueous solutions of TBBPA dissolved in humic acid (HA) by the UV-A irradiation (${\lambda}=352nm$). From these results, we suggest that the reaction rate of HA with $^1O_2$ is faster than that of TBBPA with $^1O_2$.

Bimetallic Pd@Ni-mesoporous TiO2 nanocatalyst for highly improved and selective hydrogenation of carbonyl compounds under UV light radiation

  • Bathla, Aadil;Pal, Bonamali
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.486-496
    • /
    • 2018
  • Bimetallic Pd@Ni nanostructure exhibited enhanced co-catalytic activity for the selective hydrogenation of benzaldehyde compare to their monometallic counterparts. Impregnation of these mono/bimetallic nanostructures on mesoporous $TiO_2$ leads to several surface modifications. The bimetallic PNT-3 ($Pd_3@Ni_1/mTiO_2$) exhibited large surface area ($212m^2g^{-1}$), and low recombination rate of the charge carriers ($e^--h^+$). The hydrogenation reaction was analyzed under controlled experiments. It was observed that under UV-light irradiations and saturated hydrogen atmosphere the bimetallic PNT-3 photocatalyst display higher rate constant $k=5.31{\times}10^{-1}h^{-1}$ owing to reduction in the barrier height which leads to efficiently transfer of electron at bimetallic/$mTiO_2$ interface.

A Study on the UV-cut Properties of Cotton Fabrics Treated with UV-absorber (자외선 흡수제 처리 면직물의 소비성능 개선(제1보) - 자외선 차단성능에 관한 연구 -)

  • 강미정;권영아
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.5
    • /
    • pp.925-932
    • /
    • 2001
  • The influence of ultraviolet(UV)-ray in sun light on human skin has been noted. Textiles can provide protection against harmful UV-radiation. Normally UV-absorbing finishes are used to get better protection. The purpose of this study is to evaluate the UV-cut properties of cotton fabrics treated with UV-absorber. 2,2-dihydroxy-4,4-dimethoxbenzophenone, as UV-absorber was applied to 100% cotton fabric. Reagents added in finishing solution were Triton X-100, polyethylene glycol 400, and $MgCl_2{\cdot}6H_2O$, and C.I. Direct Red 81. Both untreated and treated cotton fabrics were exposed to a xenon arc lamp for 20 and 80 hours. UV absorption spectra of finishing solutions and UV transmission spectra of fabrics were measured by the UV/VIS spectrophotometer. The results of this study can be summarized as follows. The results of this study can be summarized as follows. Absorption and the related transmission spectra were modified in a controlled way with UV-absorber. Absorption effect of UV-absorber was improved by adding Triton X-100, PEG 400, and $MgCl_2{\cdot}6H_2O$ in finishing solution. The UV absorption of finishing solution was in the following order: U/D/T/P/M>D/T/P/M> D/T> D/P, D>U/T/P/M>U/T>T/P/M>T. The UV transmittance of cotton fabrics was remarkably decreased by the application of UV-absorber and additives. The UV-cut properties were most improved by the application of U/D/T/P/M.

  • PDF

Photocatalytic Degradation of Benzene in the Gas Phase using TiO2 Coated on Ceramic and Glass Beads (세라믹과 유리에 코팅한 TiO2 광촉매를 이용한 가스상 벤젠의 제거)

  • 손현석;양원호;김현용;이소진;박종래;조경덕
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2003
  • TiO$_2$ sol was prepared by sol-gel method, and this sol was coated in ceramic and glass bead by dip-coating method. The coated catalyst was applied to degrade benzene in the gas phase by exposing to UV -lamp (365 nm) in a batch reactor. The removal efficiency of the benzene was compared by changing various conditions such as the kind of chemical additives, the coating beads (ceramic and glass), solution pH, the initial concentration of TiO$_2$ sol, UV intensity, and benzene concentration. The physical structure of TiO$_2$ sol used in this study was found to be pu-rely anatase type from XRD analysis. The results showed that ceramic bead was effective as the coating agent rath-er than glass bead. The significant change in the benzene removal efficiency of benzene did not occur with chang-ing coating frequency and the initial concentration of TiO$_2$ sol. The removal efficiency of benzene increased with increasing UV intensity, and with acidic treatment of TiO$_2$-coated ceramic bead.