• 제목/요약/키워드: UTSG

검색결과 4건 처리시간 0.017초

A Dynamic Model of U-Tube Steam Generator for CANDU Simulation

  • Lim, Jae-Cheon;Seoungyon Cho
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.213-218
    • /
    • 1996
  • A simulation model for the transient behavior of CANDU U-tube steam generator(UTSG) has been developed for application to the simulation of operational transient behavior of CANDU nuclear power plant. For application to CANDU UTSG. tile design characteristics of CANDU UTSG such as Wolsong Units, feedwater inlet near the tube sheet. is approximated. For realistic prediction of thermal hydraulic behavior of and tube bundle region is divided into two separate control volumes, subcooled region and saturated region. and the variation of thermal hydraulic properties within a control volume is considered. Test results for typical CANDU operational transient case show reasonable transient behavior of steam generator and considered to be applicable to the simulation of overall plant.

  • PDF

증기발생기의 안정성 분석 (The Analysis of Stability in a Steam Generator)

  • Shin Whan Kim;Goon Cherl Park
    • Nuclear Engineering and Technology
    • /
    • 제17권4호
    • /
    • pp.279-289
    • /
    • 1985
  • U-tube 증기 발생기 내부의 재순환 loop에서의 밀도파 진동 형태의 불안정성 분석을 하고자 한다. 단상과 2상 영역에서의 압력 강하의 섭동치를 계산하기 위하여, 상간의 slip과 비균일 열유랑 그리고 heated wall dynamics를 고려하여 drift-flux model에 근거를 둔 노드 내의 섭동 보즌 방정식이 유도되었다. Loop를 통한 일정 압력강하 경계조건하에 Nyquist 조건을 사용하여 안정성이 분석되었다. SASG computer program을 개발하여 고리 1호기의 증기 발생기에 대한 안정성을 분석하였으며, 아울러, 중요한 계통인자들의 안정성 여유도에 미치는 영향도 분석하였다.

  • PDF

Investigation on reverse flow characteristics in U-tubes under two-phase natural circulation

  • Chu, Xi;Li, Mingrui;Chen, Wenzhen;Hao, Jianli
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.889-896
    • /
    • 2020
  • The vertically inverted U-tube steam generator (UTSG) is widely used in the pressurized water reactor (PWR). The reverse flow behavior generally exists in some U-tubes of a steam generator (SG) under both single- and two-phase natural circulations (NCs). The behavior increases the flow resistance in the primary loop and reduces the heat transfer in the SG. As a consequence, the NC ability as well as the inherent safety of nuclear reactors is faced with severe challenges. The theoretical models for calculating single- and two-phase flow pressure drops in U-tubes are developed and validated in this paper. The two-phase reverse flow characteristics in two types of SGs are investigated base on the theoretical models, and the effects of the U-tube height, bending radius, inlet steam quality and primary side pressure on the behavior are analyzed. The conclusions may provide some promising references for SG optimization to reduce the disadvantageous behavior. It is also of significance to improve the NC ability and ensure the PWR safety during some accidents.

The μ-synthesis and analysis of water level control in steam generators

  • Salehi, Ahmad;Kazemi, Mohammad Hosein;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.163-169
    • /
    • 2019
  • The robust controller synthesis and analysis of the water level process in the U-tube system generator (UTSG) is addressed in this paper. The parameter uncertainties of the steam generator (SG) are modeled as multiplicative perturbations which are normalized by designing suitable weighting functions. The relative errors of the nominal SG model with respect to the other operating power level models are employed to specify the weighting functions for normalizing the plant uncertainties. Then, a robust controller is designed based on ${\mu}$-synthesis and D-K iteration, and its stability robustness is verified over the whole range of power operations. A gain-scheduled controller with $H_{\infty}$-synthesis is also designed to compare its robustness with the proposed controller. The stability analysis is accomplished and compared with the previous QFT design. The ${\mu}$-analysis of the system shows that the proposed controller has a favorable stability robustness for the whole range of operating power conditions. The proposed controller response is simulated against the power level deviation in start-up and shutdown stages and compared with the other concerning controllers.