• Title/Summary/Keyword: UTC Synchronization

Search Result 18, Processing Time 0.026 seconds

Global Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크를 위한 전역 시각 동기 기법)

  • Hwang, So-Young;Yu, Don-Hui;Joo, Jae-Heum;Won, Sung-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.84-86
    • /
    • 2010
  • Time information and time synchronization are fundamental building blocks in wireless sensor networks since many sensor network applications need time information for object tracking, consistent state updates, duplicate detection and temporal order delivery. Various time synchronization protocols have been proposed for sensor networks because of the characteristics of sensor networks which have limited computing power and resources. However, none of these protocols have been designed with time representation scheme in mind. Global time format such as UTC TOD (Universal Time Coordinated, Time Of Day) is very useful in sensor network applications. In this paper we propose time keeping and synchronization method for global time presentation in wireless sensor networks.

  • PDF

Multi-Hop Clock Synchronization Based on Robust Reference Node Selection for Ship Ad-Hoc Network

  • Su, Xin;Hui, Bing;Chang, KyungHi
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2016
  • Ship ad-hoc network (SANET) extends the coverage of the maritime communication among ships with the reduced cost. To fulfill the growing demands of real-time services, the SANET requires an efficient clock time synchronization algorithm which has not been carefully investigated under the ad-hoc maritime environment. This is mainly because the conventional algorithms only suggest to decrease the beacon collision probability that diminishes the clock drift among the units. However, the SANET is a very large-scale network in terms of geographic scope, e.g., with 100 km coverage. The key factor to affect the synchronization performance is the signal propagation delay, which has not being carefully considered in the existing algorithms. Therefore, it requires a robust multi-hop synchronization algorithm to support the communication among hundreds of the ships under the maritime environment. The proposed algorithm has to face and overcome several challenges, i.e., physical clock, e.g., coordinated universal time (UTC)/global positioning system (GPS) unavailable due to the atrocious weather, network link stability, and large propagation delay in the SANET. In this paper, we propose a logical clock synchronization algorithm with multi-hop function for the SANET, namely multi-hop clock synchronization for SANET (MCSS). It works in an ad-hoc manner in case of no UTC/GPS being available, and the multi-hop function makes sure the link stability of the network. For the proposed MCSS, the synchronization time reference nodes (STRNs) are efficiently selected by considering the propagation delay, and the beacon collision can be decreased by the combination of adaptive timing synchronization procedure (ATSP) with the proposed STRN selection procedure. Based on the simulation results, we finalize the multi-hop frame structure of the SANET by considering the clock synchronization, where the physical layer parameters are contrived to meet the requirements of target applications.

Implementation of AIS Transponder with a New Time Synchronization Method (새로운 시각 동기 방안을 적용한 자동 식별 장치의 구현)

  • 이상정;최일흥;오상헌;윤상준;박찬식;황동환
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.273-281
    • /
    • 2003
  • This paper proposes a new time synchronization scheme for the Automatic Identification System(AIS). The proposed scheme utilizes a Temperature Compensated Crystal Oscillator(TCXO) as a local reference clock, and consists of a Digitally Controlled Oscillator(DCO), a divider, a phase comparator, and register blocks. Primary time reference is IPPS from GPS receiver that is synchronized to Universal Time Coordinated(UTC). And if GPS is unavailable, other station's signal is utilized as secondary time reference. The phase comparator measures time difference between the 1PPS and the generated transmit clock. The measured time difference is compensated by controlling the DCO and the transmit clock is synchronized to the Universal Time Coordinated(UTC). The synchronized transmit clock(9600Hz) is divided into the transmitting time slot(37.5Hz). The proposed scheme is tested in an experimental AIS transponder set. The experimental result shows that the proposed module satisfies the timing specification of the AIS technical standard, ITU-R M.1371-1.

An Analysis of Error Factors for Software Based Pseudolite Time Synchronization Performance Evaluation (소프트웨어 기반 의사위성 시각동기 기법 성능평가를 위한 오차 요소 분석)

  • Lee, Ju Hyun;Lee, Sun Yong;Hwang, Soyoung;Yu, Dong-Hui;Park, Chansik;Lee, Sang Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.429-436
    • /
    • 2014
  • This paper proposes three methods of the time synchronization for Pseudolite and GPS and analyzes pseudolite time synchronization error factors for software based performance evaluation on proposed time synchronization methods. Proposed three time synchronization methods are pseudolite time synchronization station construction method, method by using UTC(KRIS) clock source and GPS timing receiver based time synchronization method. Also, we analyze pseudolite time synchronization error factors such as errors of pseudolite clock and reference clock, time delay as clock transmission line, measurement error of time interval counter and error as clock synchronization algorithm to design simulation platform for performance evaluation of pseudolite time synchronization.

Analysis on the AIS functioning effect by the internal GPS (내부 GPS가 AIS 작동에 미치는 영향 분석)

  • Kim, Byungok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.293-295
    • /
    • 2015
  • AIS의 내부 GPS는 UTC 동기 설정에 사용되며, AIS가 내부 GPS에 직접적으로 동기를 맞추지 못하면 직접동기를 하고 있는 주변 기지국 또는 선박국에 간접동기를 맞추도록 되어 있다. 그러나 내부 GPS 수신 상태가 불량하거나 GPS 접속 설정이 잘못된 경우 미송신이 발생하거나 잘못된 동적정보를 제공하는 등 AIS 동작에 오류가 발생하고 있다. 여기에서는 내부 GPS가 불량할 경우 AIS 작동에 어떤 영향을 미치는지 분석하였다.

  • PDF

Measurement of Reference Phase Offset for the Loran-C Transmitting Signal of Pohang (포항 로란-C 송신 신호의 기준위상 오프셋 측정)

  • Lee, Chang-Bok;Won, Sung-Ho;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.475-480
    • /
    • 2012
  • In order to establish eLoran (enhanced Long Range Navigation) system, it needs the advancement of receiver, transmitter, data channel addition for Loran information, differential Loran sites for compensating Loran-c signal and ASFs (Additional Secondary Factors) database, etc. In addition, the precise synchronization of transmitting station to the UTC (Coordinated Universal Time) is essential if Loran delivers the high absolute accuracy of navigation demanded for maritime harbor entrance. For better timing synchronization to the UTC among transmitting stations, it is necessary to measure and monitor the transmission delay of the station, and the correction information of the transmitting station should be provided to the user's receivers. In this paper we presented the measurement method of absolute delay of Pohang Loran transmitting station and developed a time delay measurement system and a phase monitoring system for Loran station. We achieved -2.23 us as a result of the absolute phase delay of Pohang station and the drift of Loran pulse of the station was measured about 0.3 us for a month period. Therefore it is necessary to measure the delay offset of transmitting station and to compensate the drift of the Loran signal for the high accuracy application of PNT (Positioning, Navigation and Timing).

A Study on Time Synchronization for Programmable Electronic Systems of Train Control (열차제어 장치용 실시간 시스템의 시간 동기화에 관한 연구)

  • Kang, Shin Ju;Lee, Jong Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.1019-1023
    • /
    • 2014
  • The issue of safety insurance in PES(Programmable Electronic Systems) has been provoked because PES is difficult to define failure modes which are appeared in many different ways. But the PES applications extend rapidly in various areas. One of the solutions for PES safety insurance is voting which PES is used by comparing the outputs of several PES. The time synchronization of the PES is necessary for this reliable voting. The voting must be carried out with the outputs from same time inputs. There are several methods for time synchronization of the PES. In this paper, we discussed two modes of the time synchronization which are mutual synchronization of several PES and using UTC(Universal Time Clock).

The Time Synchronization Signals of the GNSS Receiver for KSLV-II and Their Performance Assessment (한국형발사체 위성항법수신기의 시각동기신호 생성 및 성능 평가)

  • Kwon, Byung-Moon;Shin, Yong-Sul;Ma, Keun-Su;Yun, Kwang-Ho;Seo, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.812-820
    • /
    • 2019
  • The GNSS receiver for KSLV(Korea Space Launch Vehicle)-II provides real-time navigation data as well as precise time and time interval. The precise time signals provided by the GNSS receiver that can be used for the time synchronization between onboard systems, and between the onboard systems and ground stations have the forms of the 1PPS(One Pulse Per Second) and IRIG-B(Inter-Range Instrumentation Group Time Code B) which are synchronized with UTC(Coordinated Universal Time). A signal for timing faults also informs whether the time synchronization signals are available or not. This paper describes the time synchronization signals of the GNSS receiver for KSLV-II and their performance assessment.

Software-based Performance Analysis of a Pseudolite Time Synchronization Method Depending on the Clock Source

  • Lee, Ju Hyun;Hwang, Soyoung;Yu, Dong-Hui;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.4
    • /
    • pp.163-170
    • /
    • 2014
  • A pseudolite is used as a GPS backup system, and is also used for the purpose of indoor navigation and correction information transmission. It is installed on the ground, and transmits signals that are similar to those of a GPS satellite. In addition, in recent years, studies on the improvement of positioning accuracy using the pseudorange measurement of a pseudolite have been performed. As for the effect of the time synchronization error between a pseudolite and a GPS satellite, a time synchronization error of 1 us generally induces a pseudorange error of 300 m; and to achieve meter-level positioning, ns-level time synchronization between a pseudolite and a GPS satellite is required. Therefore, for the operation of a pseudolite, a time synchronization algorithm between a GPS satellite and a pseudolite is essential. In this study, for the time synchronization of a pseudolite, "a pseudolite time synchronization method using the time source of UTC (KRIS)" and "a time synchronization method using a GPS timing receiver" were introduced; and the time synchronization performance depending on the pseudolite time source and reference time source was evaluated by designing a software-based pseudolite time synchronization performance evaluation simulation platform.

A Network Time Server using CPS (GPS를 이용한 네트워크 시각 서버)

  • 황소영;유동희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1004-1009
    • /
    • 2004
  • Precise time synchronization is a main technology in high-speed communications, parallel and distributed processing systems, Internet information industry and electronic commerce. Synchronized clocks are useful for many leasers. Often a distributed system is designed to realize some synchronized behavior, especially in real-time processing in factories, aircraft, space vehicles, and military applications. Nowadays, time synchronization has been compulsory thing as distributed processing and network operations are generalized. A network time server obtains, keeps accurate and precise time by synchronizing its local clock to standard reference time source and distributes time information through standard time synchronization protocol. This paper describes design issues and implementation of a network time server for time synchronization especially based on a clock model. The system uses GPS (Global Positioning System) as a standard reference time source and offers UTC (universal Time coordinated) through NTP (Network Time protocol). Implementation result and performance analysis are also presented.