• Title/Summary/Keyword: USN(Ubiquitous Sensor Networks)

Search Result 127, Processing Time 0.025 seconds

6LoWPAN Based IP-USN System Implementation for Improving Scalability (확장성 향상을 위한 6LoWPAN 기반의 IP-USN 시스템 구현)

  • Oh, Seung-Kyo;Efendi, Ardiansyah Musa;Choi, Deok-Jai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.9
    • /
    • pp.687-699
    • /
    • 2013
  • IP-based IP-USN overcomes that disadvantages of verify the existence and geographic limits of the sensor by applying a standard technique called 6LoWPAN. However, in terms of the management and cost, The USN node should work for a long period of time without periodic batter replacement. but this solution is insufficient.In this paper, we configure the node using TI's CC2530 that low-power Soc solution and Contiki OS for optimal low-power operation IP-USN and implement the gateway to support connecting IP networks and Sensor networks. In addition, a system implemented to measure and analyze the energy consumption of an independent power supply to look for ways.

USN based sonar localization system for a fish robot (물고기 로봇을 위한 USN 기반 초음파 측위 시스템)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Park, Aa-Ron
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.53-60
    • /
    • 2008
  • Localization is the most important functions in mobile robots. There are so many approaches to realize this essential function in wheel based mobile robots, but it is not easy to find similar examples in small underwater robots. It is presented the sonar localization system using ubiquitous sensor network for a fish robot in this paper. A fish robot uses GPS and sonar system to find exact localization. Although GPS is essential tool to obtain positional information, this device doesn't provide reasonable resolution in localization. To obtain more precise localization information, we use several Ubiquitous Sensor Networks (USN) motes with sonar system. Experimental results show that a fish robot obtains more detailed positional information.

Design of energy-efficient routing method for USN based Large scale Glass greenhouses (USN based Large Scale Glass greenhouses를 위한 에너지 효율적인 라우팅 방법)

  • Kang, Hyun-Joong;Kang, Min-Ah;Lee, Myung-Hun;Yoe, Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.685-689
    • /
    • 2007
  • Recently, wireless communication technology and state of art miniaturization has enabled the wireless sensor network with Smart Environmental sensors. The sensor network is a new field which has been researched vigorously in the ubiquitous computing and Ad-hoc network. How to efficiently use the limited energy in this USN(Ubiquitous sensor Networks) has been debated recently. We utilized the Directed Diffusion and Gossiping concept which is based on the Large scale Glass greenhouse and present a method to prolong the lifespan of the sensor network by operating variable time based this routing information on the average energy leftover. In this paper, we present a method to minimize the energy consumption of sensor node within Glass greenhouses and ensure a stable network operation at the same time through energy efficient routing among sensor nodes.

  • PDF

The Study of Sensor Network for Information Retrieval and Communication Protocol High Performance Algorithm (센서 네트워크의 정보검색 및 통신프로토콜 성능향상 알고리즘에 관한 연구)

  • Kang, Jeong-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.816-823
    • /
    • 2010
  • Recently research efforts for ubiquitous technology that includes RFID(Radio Frequency Deification and sensor networks are conducted very actively The architectural framework of the USN sensor network discovery service. The survey of the USN technology is conducted on four technological visions that contain USN system technology USN networking technology and USN middleware along with the service platform, With respect to each technological division domestic and worldwide leading research projects are primarily explored with their technical features and research projects are primarily explored with their technical features and research outputs. Boasted on the result of the survey we establish a USN software model that includes data sensing, sensor data storage sensor data storage sensor data naming and sensor feed name service. This main objective of this model is to provide a reference model for the facilitation of USN application developments.

Region Query Reconstruction Method Using Trie-Structured Quad Tree in USN Middleware (USN 미들웨어에서 트라이 구조 쿼드 트리를 이용한 영역 질의 재구성 기법)

  • Cho, Sook-Kyoung;Jeong, Mi-Young;Jung, Hyun-Meen;Kim, Jong-Hoon
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.1
    • /
    • pp.15-28
    • /
    • 2008
  • In ubiquitous sensor networks(USN) environment, it is essential to process region query for user-demand services. Using R-tree is a preferred technique to process region query for in-network query environment. In USN environment, USN middleware must select sensors that transfers region query with accuracy because the lifetime of sensors is that of whole sensor networks. When R-tree is used, however, it blindly passes the region query including non-existent sensors where MBR(Minimum Boundary Rectangle) of R-tree is Intersected by region of query. To solve in this problem, we propose a reconstruction of region query method which is a trie-structured Quad tree in the base station that includes sensors in region of query select with accuracy. We observed that the proposed method delays response time than R-tree, but is useful for reducing communication cost and energy consumption.

  • PDF

The Development of New dynamic WRR Algorithm for Wireless Sensor Networks (무선 센서망을 위한 새로운 동적 가중치 할당 알고리즘 개발)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.293-298
    • /
    • 2010
  • The key of USN(Ubiquitous Sensor Network) technology is low power wireless communication technology and proper resource allocation technology for efficient routing. The distinguished resource allocation method is needed for efficient routing in sensor network. To solve this problems, we propose an algorithm that can be adopted in USN with making up for weak points of PQ and WRR in this paper. The proposed algorithm produces the control discipline by the fuzzy theory to dynamically assign the weight of WRR scheduler with checking the Queue status of each class in sensor network. From simulation results, the proposed algorithm improves the packet loss rate of the EF class traffic to 6.5% by comparison with WRR scheduling method and that of the AF4 class traffic to 45% by comparison with PQ scheduling method.

USN Metadata Definition and Metadata Management System for Ubiquitous Sensor Network (유비쿼터스 센서 네트워크를 위한 USN 메타데이터 정의 및 메타데이터 관리 시스템)

  • Park, Jong-Hyun;Kang, Ji-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.143-153
    • /
    • 2011
  • The goal of Ubiquitous Sensor Network(USN) environments is to provide users high quality services based on a variety of sensors. In this environment, sensor devices, sensor nodes and sensor networks are heterogeneous and have various characteristics. Therefore it is important for interoperability to define a metadata for describing USN resources. The OGC(Open Geospatial Consortium) proposes SensorML(Sensor Model Language) as a standard language for modeling sensors. However, SensorML provides a framework for describing a processing model among sensors rather than describing information of sensors. Therefore, to describe a USN metadata is not main purposes of SensorML. This paper defines a USN metadata which describes information about sensor device, sensor node, and sensor network. Also the paper proposes a method for efficiently storing and searching the USN metadata and implements a USN metadata management system based on our method. We show that our metadata management system is reasonable for managing the USN metadata through performance evaluation. Our USN metadata keeps the interoperability in USN environments because the metadata is designed on SensorML. The USN metadata management system can be used directly for a USN middleware or USN application.

Minimizing Redundant Route Nodes in USN by Integrating Spatially Weighted Parameters: Case Study for University Campus (가중치가 부여된 공간변수에 의거하여 USN 루트노드 최소화 방안 -대학 캠퍼스를 사례로-)

  • Kim, Jin-Taek;Um, Jung-Sup
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.6
    • /
    • pp.788-805
    • /
    • 2010
  • The present USN (Ubiquitous Sensor Networks) node deployment practices have many limitations in terms of positional connectivity. The aim of this research was to minimize a redundancy of USN route nodes, by integrating spatially weighted parameters such as visibility, proximity to cell center, road density, building density and cell overlapping ratio into a comprehensive GIS database. This spatially weighted approach made it possible to reduce the number of route nodes (11) required in the study site as compared to that of the grid network method (24). The field test for RSSI (Received Signal Strength Indicator) indicates that the spatially weighted deployment could comply with the quality assurance standard for node connectivity, and that reduced route nodes do not show a significant degree of signal fluctuation for different site conditions. This study demonstrated that the spatially weighted deployment can be used to minimize a redundancy of USN route nodes in a routine manner, and the quantitative evidence removing a redundancy of USN route nodes could be utilized as major tools to ensure the strong signal in the USN, that is frequently encountered in real applications.