• Title/Summary/Keyword: USLE(universal soil loss equation)

Search Result 88, Processing Time 0.027 seconds

Applicability Examination of the RUSLE Sediment Yield Prediction Equation in Korea (해외토사유출량 산정공식의 국내적용성 검토(II);MUSLE를 중심으로)

  • Son, Gwang-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.3
    • /
    • pp.209-216
    • /
    • 2001
  • Universal Soil Loss Equation(USLE) was developed for the estimation of the annual average soil loss from farm land. But, USLE has been applied in estimation of the sediment yield due to the construction activities in Korea without any calibration for last couple of years. Therefore, applicability and the limitation of the MUSLE(modified USLE), which was developed for the estimation of the sediment yield due to single rainfall event, is examined by application of MUSLE into several construction sites and comparing the estimated sediment yields with the actual ones. It is found that MUSLE could be applied in Korea as long as the concentration time, runoff volume and the peak flow rate are estimated with appropriate methods. Comparisons between the applicability of RUSLE and MUSLE are also carried out.

  • PDF

A Study to Determine the Rainfall Erosivity Factor of Universal Soil Loss Equation using Recent Rainfall Data (최근 강수 자료를 이용한 범용토양유실공식의 강우침식능인자 정의에 관한 연구)

  • Kim, Jonggun;Jang, Jin Uk;Seong, Gak Gyu;Cha, Sang Sun;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.13-20
    • /
    • 2018
  • Universal Soil Loss Equation (USLE) has been widely used to estimate potential soil loss because USLE is a simple and reliable method. The rainfall erosivity factor (R factor) explains rainfall characteristics. R factors, cited in the Bulletin on the Survey of the Erosion of Topsoil of the Ministry of Environment in the Republic of Korea, are too outdated to represent current rainfall patterns in the Republic of Korea. Rainfall datasets at one minute intervals from 2013 to 2017 were collected from fifty rainfall gauge stations to update R factors considering current rainfall condition. The updated R factors in this study were compared to the previous R factors which were calculated using the data from 1973 to 1996. The coefficient of determination between the updated and the previous R factors shows 0.374, which means the correlation is not significant. Therefore, it was concluded that the previous R factors might not explain current rainfall conditions. The other remarkable result was that regression equations using annual rainfall data might be inappropriate to estimate reasonable R factors because the correlation between annual rainfall and the R factors was generally unsatisfy.

A Study on the Peak Discharge and Soil Loss Variation due to the New Town Development - In the Case of Namak New Town Development Area - (신도시 개발에 따른 첨두유출량과 토양유실량 변화에 관한 연구 -목포시 남악 신도시 개발지를 대상으로-)

  • Woo, Chang-Ho;Cho, Nam-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2002
  • The purpose of this study is to explore the hydrological impacts and soil loss variation due to the land use change of Namak New Town development area. The analysis of hydrological effects and soil loss variation has been carried out using GIS in this study. In order to estimate the peak runoff volume, the Rational Method which is the most popular technique to predict runoff amounts is used. To estimate the soil loss in the study area, Universal Soil Loss Equation(USLE), which is one of the most comprehensive and useful technique to predict soil erosion is adopted. The result of this study has shown that the peak runoff volume and the total soil loss increase according to the land use change. The peak runoff volume and the total soil loss have been increased about 2 times and about 48 times more than that of pre development. The increasing of the peak runoff volume can be effective erosion, flooding and so on. A careful city planning is the first essential step to minimize the environmental impacts and to construct the ecological city.

Evaluation of SATEEC Daily R Module using Daily Rainfall (일강우를 고려한 SATEEC R 모듈 적용성 평가)

  • Woo, Wonhee;Moon, Jongpil;Kim, Nam Won;Choi, Jaewan;Kim, Ki-sung;Park, Youn Shik;Jang, Won Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.841-849
    • /
    • 2010
  • Soil erosion is an natural phenomenon. However accelerated soil erosion has caused many environmental problems. To reduce soil loss from a watershed, many management practices have been proposed worldwide. To develop proper and efficient soil erosion best management practices, soil erosion rates should be estimated spatially and temporarily. The Universal Soil Loss Equation (USLE) and USLE-based soil erosion and sediment modelling systems have been developed and tested in many countries. The Sediment Assessment Tool for Effective Erosion Control (SATEEC) system has been developed and enhanced to provide ease-of-use interface to the USLE users. However many researchers and decision makers have requested to enhance the SATEEC system for simulation of soil erosion and sediment reflecting effects of single storm event. Thus, the SATEEC R factors were estimated based on 5 day antecedent rainfall data. The SATEEC 2.1 daily R factor was applied to the study watershed and it was found that the R2 and EI values (0.776 and 0.776 for calibration and 0.927 and 0.911 for validation) with the daily R were greater than those (0.721 and 0.720 for calibration and 0.906 and 0.881 for validation) with monthly R, which was available in the SATEEC 2.0 system. As shown in this study, the SATEEC with daily R can be used to estimate soil erosion and sediment yield at a watershed scale with higher accuracy. Thus the SATEEC with daily R can be efficiently used to develop site-specific soil erosion best management practices based on spatial and temporal analysis of soil erosion and sediment yield at a daily-time step, which was not possible with USLE-based soil erosion modeling system.

Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System (SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석)

  • Yoo, Dongsun;Ahn, Jaehun;Yoon, Jongsuk;Heo, Sunggu;Park, Younshik;Kim, Jonggun;Lim, Kyoung Jae;Kim, Ki-sung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

Estimation of Rainfall Erosivity in USLE (범용토양유실공식의 강우침식도 추정)

  • Kim, Chang-Wan;U, Hyo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.457-467
    • /
    • 1999
  • No complete methods for estimating soil loss, included by rain storms, from a small watershed are available yet, and the best recommended method is to use measured data from the watershed. When no measured data is available from the watershed, empirical models for estimating the soil loss, such as the Universal Soil Loss Equation(USLE), is well recommended in practice. For using this equation, it is necessary to estimated the rainfall erosivity, commonly expressed as R, of the watershed. In this study, first we collected data of the probable rainfalls with the return periods of 2, 5, 10, 20, 30, 50, 80, 100, 200, and 500-yr and with the duration hours of 0.5, 1, 2, 3, 6, 12, and 24-hr. Using this data, we calculated the design values for R for the return period of 24-hr at each major rainfall-measuring station nationwide. Then we constructed the iso-erodent map of Korea for each return period of the 24-hr design storm. This study shows that the 24-hr duration iso-erodent map of the 5-yr return period is very similar to the annual average iso-erodent map of Korea. This study also shows that the 24-hr duration R-values of a certain return period can be estimated by multiplying certain parameters, obtained from this study, to the 24-hr duration R-values for the 5-yr return period or the annual average R-values. Finally, the R-values of the design storm with the 24-hr return period obtained from this study can be used for designing the settling basins at small watersheds.

  • PDF

Rainfall Erosion Factor for Estimating Soil Loss (토양유실량 여측(予測)을 위한 강우인자(降雨因子)의 분석(分析))

  • Jung, Pil-Kyun;Ko, Mun-Hwan;Im, Jeong-Nam;Um, Ki-Tae;Choi, Dae-Ung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.112-118
    • /
    • 1983
  • Rainfall factor (R-factor), which is an index for the prediction of soil erosion in the Universal Soil Loss Equation (USLE), was computed from 21 years rainfall data at 51 locations in Korea. The values of R-factor are from 200 to 300 in the eastern part, and 300 to 700 in the western and southern part of the peninsula. Curvilinear regressions exist between annual rainfall and annual R-factor or between monthly rainfall and monthly R-factor. The R-factor can be estimated from the regression equation as a function of the amount of rainfall. According to the comparison between the actual soil loss measured by lysimeter and the soil loss predicted by the USLE, EI 30 for R-factor was recognized as a suitable factor for the USLE in korea.

  • PDF

Estimation of Soil Erosion Using National Land Cover Map and USLE (USLE와 국가토지피복지도를 이용한 토양유실 추정)

  • Jeong, JongChul
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.525-531
    • /
    • 2016
  • This study integrates the Universal Soil Loss Equation(USLE) with GIS method to assess the soil erosion for national land cover map between 2007 and 2014. The land cover change map and C factors of USLE were applied to the estimation of spatial distribution of sediment yield. However, they generated distinct results because of differences in their applied methods and calculation processes of national land cover map. To generate the USLE model, C factors of MOE(Ministry of Environment) were compared with soil erosion of Inje stadium development area at the Naerin watershed in Gangwon province to 2014. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion calculation. The land cover change were carried with level-2 and high level land cover map of MOE and estimated maximum double of soil erosion.

Analysis of Soil Erosion Vulnerability at Alpine Agricultural Fields of HongCheon County (홍천군 산지농업지대의 토양침식취약성 분석)

  • Kim, Ki-Sung;Heo, Sung-Gu;Jung, Yeoug-Sang;Kim, Ji-Man;Lim, Kyoung-Jae
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.2 s.27
    • /
    • pp.51-57
    • /
    • 2005
  • It has been well known that soil erosion and sediments from alpine agricultural fields are causing severe water quality and turbidity problems in receiving waters. Also these result in the loss of money because farmers have to buy top soils to provide enough root zone in the following year. Thus, there have been needs to reduce soil erosion and sediment discharge into the stream networks. To accomplish this end, an effective erosion control plans should be developed based on scientific research, not by rule of thumb. The Universal Soil Loss Equation (USLE) has been widely used to estimate the soil erosion in many countries over the years. In this study, the USLE was used to estimate soil erosion potential under different cropping scenarios in HongCheon County, Kangwon. The soil erosion potential for continuous corn cropping was the highest compared with those from continuous potato find average cropping scenarios. This indicates the soil erosion plans need to be established considering cropping system in the field. The Unit Stream Power Erosion-Deposition (USPED) was applied for HongCheon County to estimate soil erosion and deposition areas. The USPED estimated results can be used to complement USLE results in developing effective erosion control plans.

Evaluation of Phosphorus and Nitrogen Delivery Characteristics of Chogang Stream Sediments (초강천의 퇴적물 분석을 이용한 총인 및 질소의 유달 특성 평가)

  • Kang, Seon-Hong;Seo, Dong-il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.99-109
    • /
    • 1997
  • To estimate the nutrients delivery characteristics of Chogang stream to Keum River, sediment and soil characteristics were analyzed in the stream and in the stream bank. Along the stream, soil samples from river sediment were collected and tested monthly for phosphorus and nitrogen concentrations. Nitrogen concentration in the sediment is much lower than that of soil in the river bank especially in summer presumably due to the high desorption characteristics of nitrogen by the increasing rainfall energy during summer. Instead, the concentrations of phosphorus were similar for the sediment and the soil in the river bank due to the strong adsorption characteristics of phosphorus. Batch tests were performed to evaluate the desorption potential of the sediments. Universal Soil Loss Equation (USLE) was applied to quantify soil erosion in each watershed due to rainfall. It was estimated that approximately 25% of total phosphorus by mass basis could be released from the sediment if the water was disturbed vigorously. The mass load of nitrogen and phosphorus into the Chogang Stream from the watershed were evaluated from the USLE and release ratio of phosphorus.

  • PDF