• Title/Summary/Keyword: URBAN TEMPERATURE

Search Result 1,010, Processing Time 0.025 seconds

The Analysis of Time Series of SO2 Concentration and the Control Factor in An Urban Area of Yongsan-gu, Seoul (서울시 용산구 지역에 이산화황 농도의 시계열 변동과 영향인자 분석)

  • Kim, Bo-Won;Kim, Ki-Hyun
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.543-553
    • /
    • 2014
  • The environmental behavior of $SO_2$ was investigated in terms of the factors affecting the temporal variabilities by analyzing the data sets obtained from the Yongsan district in Seoul from 2004 till 2013. To this end, the relationship between $SO_2$ and relevant parameters including particulate matters (such as $PM_{2.5}$, $PM_{10}$, and TSP (total suspended particulates)) and gaseous components ($CH_4$, CO, THC (total hydrocarbon), NMHC (non-methane hydrocarbon), NO, $NO_2$, NOx, and $O_3$) was investigated in several aspects. Over a decade, the annual mean concentrations of $SO_2$ varied in the range of $4.36-5.86nmole\;mole^{-1}$ (min-max) which was about five times lower than the regulation guideline set for the air quality management in Korea. In fact, this pattern greatly contrasts with some other air pollutants of which concentrations exceeded their guideline values significantly. According to our analysis, $SO_2$ was strongly correlated to the temperature and other relevant parameters. The overall results of this study confirm that the administrative regulation of $SO_2$ levels has been made effectively relative to other airborne pollutants.

A Study on the Distribution Characteristics of Terpene at the Main Trails of Mt. Mudeung (무등산 주요 탐방로에서 테르펜 분포특성 연구)

  • Lee, Dae-Haeng;Kim, Min-Hee;Park, Ok-Hyun;Park, Kang-Soo;An, Sang-Su;Seo, Hee-Jeong;Jin, Seung-Hyun;Jeong, Won-Sam;Kang, Yeong-Ju;An, Ki-Wan;Kim, Eun-Sun
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.211-222
    • /
    • 2013
  • Objectives: A great number of people visit forests for their bountiful healing factors. We investigated the quantity of terpene and analyzed the correlations with meteorological and environmental factors at Mt. Mudeung in order to support public health. Methods: The terpene amounts were investigated along 11 main trails using stainless steel tube packed by Tenax TA (150 mg) and Carbopack B (130 mg) during March to November 2012. Terpene amounts of 20 species (${\alpha}$-pinene, camphene, etc.), and meteorological and environmental factors were investigated in the field. Results: Terpene of 16 species was released from the forest and total terpene amounts were 2,080 pptv at the site of Chamaecyparis obtusa, the highest among 11 sites, nearby the first reservoir on Mt. Mudeung. Terpene concentrations in the forest were nine to 23 times higher than found in urban areas. Total terpene amounts had positive correlations with temperature, humidity, carbon dioxide and oxygen (p<0.01) with $R^2$ of 0.345, 0.369, 0.591, 0.145, respectively, from April to July. Wind speed and solar radiation in the forest had a negative correlation with terpene amounts and showed statistical insignificance with p-values of 0.118 and 0.233, respectively. Conclusions: This study suggests that the amounts of terpene around Mt. Mudeung are indeed higher, so visitors may enjoy a therapeutic walk in the forest with a healing effect. These results showed the forest was very effective for improving human health.

Development Hybrid Filter System for Applicable on Various Rainfall (다양한 강우사상에 대응 가능한 침투여과형 기술개발)

  • Choi, Jiyeon;Kim, Soonseok;Lee, Soyoung;Nam, Guisook;Cho, Hyejin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.535-541
    • /
    • 2013
  • The urbanization affects significantly on a natural water circulation system by increasing the imperviousness rate. It is also negatively affecting on urban temperature, environmental pollution, water quality, and aqua-ecosystems. The Korea MOE (Ministry of Environment) adapted a new environmental policy in order to reduce the impact of urbanization, which is the Green Stormwater Infrastructure (GSI) program. The GSI can be achieved by protecting conservable green spaces, enlarging more green spaces, and constructing more permeable pavements. The GSI is including many different techniques such as bioretention, rain garden, infiltration trench and so on. Also It is the infrastructures using natural mechanisms of soils, microorganisms, plants and animals on a water circulation system and pollutant reduction. In this research, a multi functional GSI technology with infiltration-filtration mechanisms has been developed and performed lab-scale tests to evaluate the performances about infiltration rate restoration and pollutant reduction. The most of pollutants including metals, organics and particulates were reduced about 50~90% due to water infiltration and storage functions. The clogging was found when the TSS loading rate was reached on $8.3{\sim}9.0kg/m^2$, which value is higher than the values in literatures. It means the new technology can show high performances with low maintenances.

Dynamic shear behavior of geosynthetic-soil interface considering thermalchemical factors (열-화학적 인자를 고려한 복층터널의 지반-토목섬유의 접촉면 전단거동)

  • Jang, Dong-In;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • The needs for the utilization of space in the urban ara due to the increasing population and traffic volume. A Double-deck tunnel can be an appropriate solution. Geosynthetics are inevitably installed between ground and tunnel lining, therefore, geosynthetic-soil interface is also comprises. Dynamic shear behavior of geosynthetic-soil interface affects the dynamic behavior of tunnel, and experimental study is required since the behavior is very complicated. In this study, chemical factors such as acid and basic element in the groundwater and temperature are considered in the laboratory test. Multi-purpose Interface Apparatus(M-PIA) is utilized and submerging periods are 60 and 960 days. Consequently, dynamic shear degradation of geosynthetic-soil interface considering chemical and thermal factors are verified.

A Study on the Current Status of Musa basjoo Planting in Folk Village and Traditonal Temple (민속마을과 전통사찰 경내의 파초(Musa basjoo)식재 실태)

  • Kim, Young-Suk;Rho, Jae-Hyun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.124-133
    • /
    • 2014
  • The study on Musa basjoo planting in traditional gardens in of folk villages and traditional temples was conducted to identify the phenomenon of Musa basjoo planting which frequently appears in paintings and literatures of the late Joseon dynasty and how the cultural custom is being handed down. The result of the study is as follows. As a result of studying state-designated folk villages 6 sites, the custom is being handed down in a few limited gardens including Asan Oeam Village and Seongju Hangae Village. In case of Oeam Village, there are three gardens where Musa basjoo was planted including Seolimbang, Vice Minister's Residence, and Geonjae House where Musa basjoo withered now. In case of Hangae Village, it was found in Bukbi House, Hahoe Residence and Gyoridaek Jinsa's Residence and most of them were planted in front of guesthouses and main building with the assemble-planting method. Musa basjoo planting was confirmed in 39 traditional temples and it was found that Yangsan Tongdosa Temple and attached hermitage Geukrakam are currently prevalent in Musa basjoo planting. Musa basjoo was planted on either side of the stairs of Buddhist sanctums for Buddha and Avalokitesvara Guan Yin of main temples and gwaneum temples with the assemble-planting method and it has a tendency of pair planting. Considering that Musa basjoo is a southern plant, most of Musa basjoo planting was distributed around Jeollanam-do and Gyeongsangnam-do, which is closely related to the isotherm distribution of the Korean Peninsula. Especially, it was found that planting flora was centered on $12^{\circ}C$ of Warmth Index $100^{\circ}$ and annual average temperature.

Study on the Performance Evaluation of Colored Asphalt Hot Mixtures through the Usage of Grain-typed Color Additive (알갱이 형태의 유색첨가제를 이용한 칼라 아스팔트 혼합물의 공용성 평가 연구)

  • Lee, Sang-Yum;Ahn, Yong-Ju;Mun, Sung-Ho;Kim, Yeong-Min
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.117-122
    • /
    • 2011
  • Asphalt concrete pavement can be widely seen on urban streets, highways, parking lots, and bike trails. Asphalt concrete pavement is relatively temperature sensitive materials due to the viscoelastic behavior, which can be defined as flexible performance in summer and rigid performance in winter. In terms of maintenance, it can be fixed quite easily if damaged. In addition, asphalt concrete pavement is generally found to be black and grey in color. However, several colors can be adopted to change the appearance of plain old boring, black and grey. Generally, there are two types of color systems in hot mix asphalt concrete materials. One system uses colored cementitious material that is applied to pavement surface through coating the surface of the asphalt pavement. The major disadvantage to this system requires a careful skill set to be used on the construction site in order to prevent taking off the cementitious material. The other coloring system colors the asphalt hot mixtures through using color additives. The main advantage to this system is that the asphalt pavement layer is colored using the same techniques that are already used in paving. The disadvantage is that the colors are limited to mainly reds and browns. In this study, a suggested color additive was evaluated, based on rutting, moisture sensitivity, and fatigue cracking performance.

PAHs Concentrations of PM10 in Seoul Metropolitan Area (수도권 지역 PM10의 PAHs 농도 특성)

  • Hong, Sang-Bum;Kang, Chang-Hee;Kim, Won-Hyung;Kim, Yong-Pyo;Yi, Seung-Muk;Ghim, Young-Sung;Song, Chul-Han;Jung, Chang-Hoon;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.347-359
    • /
    • 2009
  • The concentrations of PAHs in $PM_{10}$ fine particles were determined at two sites, which were Jongno, one of the urban core sites of Seoul, and Yongin, a downwind site of Seoul. The average concentration of PAHs in $PM_{10}$ was $19.92{\pm}18.49\;ng\;m^{-3}$ with the range of $1.28{\sim}81.22\;ng\;m^{-3}$ at Jongno site of Seoul from August 2006 to August 2007, and $14.06{\pm}9.96\;ng\;m^{-3}$ with the range of $1.66{\sim}31.84\;ng\;m^{-3}$ at Yongin site from September to November of 2006. In the results of monthly comparison, the concentration of PAHs in August was the lowest level of $3.23\;ng\;m^{-3}$, but the highest level of $46.24\;ng\;m^{-3}$ in January. The seasonal comparison showed the concentration in winter was higher by the factor of 11.9 than in summer. The concentrations of PAHs during a warm period (November${\sim}$March) increased as 5.1 times higher than those during a cold period (April${\sim}$October). The concentrations of PAHs were assumed to be largely attributed to the consumption of fossil fuels, temperature, mixing height, and photochemical reactions in Seoul metropolitan area.

Characteristics of Organic Carbon Species in Atmospheric Aerosol Particles at a Gwangju Area During Summer and Winter (여름 및 겨울철 광주지역 대기 에어로졸 입자의 유기탄소 특성)

  • Park, Seung-Shik;Hur, Jai-Young;Cho, Sung-Y.;Kim, Seung-J.;Kim, Young-Joon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.6
    • /
    • pp.675-688
    • /
    • 2007
  • To characterize organic and elemental carbon (OC and EC), and water-soluble organic carbon (WSOC) contents, daily $PM_{2.5}$ measurements were performed in August 2006 (summer) and Jan $11{\sim}Feb$ 12 2007 (winter) at an urban site of Gwangju. Daily size-segregated aerosol samples were also collected for WSOC analysis. No clear seasonal variations in EC and WSOC concentrations were observed, while seasonal differences in OC concentration, and OC/EC and WSOC/EC ratios were shown. The WSOC/OC ratio showed higher value in summer (0.56) than in winter (0.40), reflecting the greater enhancement of secondary WSOC formation at the site in summer. Secondary WSOC concentrations estimated using EC tracer method were in the range $0.0{\sim}2.1\;{\mu}g/m^3$ (average $0.42\;{\mu}g/m^3$) and $0.0{\sim}1.1\;{\mu}g/m^3\;(0.24\;{\mu}g/m^3)$, respectively, accounting for $0{\sim}51.6%$ (average 16.8%) and $0{\sim}52.5%$ (average 13.1 %) of the measured WSOC concentrations in summer and winter. Sometimes higher WSOC/OC ratio in winter than that in summer could be attributed to two reasons. One is that the stable atmospheric condition often appears in winter, and the prolonged residence time would strengthen atmospheric oxidation of volatile organic compounds. The other is that decrease of ambient temperature in winter would enhance the condensation of volatile secondary WSOC on pre-existing aerosols. In summertime, atmospheric aerosols and WSOC concentrations showed bimodal size distributions, peaking at the size ranges $0.32{\sim}0.56\;{\mu}m$ (condensation mode) and $3.2{\sim}5.6\;{\mu}m$ (coarse mode), respectively. During the wintertime, atmospheric aerosols showed a bimodal character, while WSOC concentrations showed a unimodal pattern. Size distributions of atmospheric aerosols and WSOC with a peak in the size range $0.32{\sim}0.56\;{\mu}m$ were observed for most of the measurement periods. On January 17, however, atmospheric aerosols and WOSC exhibited size distributions with modal peaks in the size range $1.0{\sim}1.8\;{\mu}m$, suggesting that the aerosol particles collected on that day could be expected to be more aged, i.e, longer residence time, than the aerosols at other sampling periods.

Investigation of Vertical Profiles of Meteorological Parameters and Ozone Concentration in the Mexico City Metropolitan Area

  • Benitez-Garcia, Sandy E.;Kanda, Isao;Okazaki, Yukiyo;Wakamatsu, Shinji;Basaldud, Roberto;Horikoshi, Nobuji;Ortinez, Jose A.;Ramos-Benitez, Victor R.;Cardenas, Beatriz
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.114-127
    • /
    • 2015
  • In the Mexico City Metropolitan Area (MCMA), ozone ($O_3$) concentration is still higher than in other urban areas in developed countries. In order to reveal the current state of photochemical air pollution and to provide data for validation of chemical transport models, vertical profiles of meteorological parameters and ozone concentrations were measured by ozonesonde in two field campaigns: the first one, during the change of season from wet to dry-cold (November 2011) and the second during the dry-warm season (March 2012). Unlike previous similar field campaigns, ozonesonde was launched twice daily. The observation data were used to analyze the production and distribution of ozone in the convective boundary layer. The observation days covered a wide range of meteorological conditions, and various profiles were obtained. The evolution of the mixing layer (ML) height was analyzed, revealing that ML evolution was faster during daytime in March 2012 than in November 2011. On a day in November 2011, the early-morning strong wind and the resulting vertical mixing was observed to have brought the high-ozone-concentration air-mass to the ground and caused relatively high surface ozone concentration in the morning. The amount of produced ozone in the MCMA was estimated by taking the difference between the two profiles on each day. In addition to the well-known positive correlation between daily maximum temperature and ozone production, effect of the ML height and wind stagnation was identified for a day in March 2012 when the maximum ground-level ozone concentration was observed during the two field campaigns. The relatively low ventilation coefficient in the morning and the relatively high value in the afternoon on this day implied efficient accumulation of the $O_3$ precursors and rapid production of $O_3$ in the ML.

Size-segregated Allergenic Particles Released from Airborne Cryptomeria japonica Pollen Grains during the Yellow Sand Events within the Pollen Scattering Seasons

  • Wang, Qingyue;Gong, Xiumin;Suzuki, Miho;Lu, Senlin;Sekiguchi, Kazuhiko;Nakajima, Daisuke;Miwa, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.191-198
    • /
    • 2013
  • Cryptomeria japonica pollen is the most common pollen, which are scattering during each spring season in Japan. Japanese cedar (Cryptomeria japonica) pollinosis is one of seasonal allergic rhinitis that mainly occurs in Japan. In addition, long range transportation of Yellow Sand from the East Asian continent was also found during the pollen scattering seasons in Japan. Therefore, the interaction or impact between pollen and Yellow Sand should be concerned. In this study, our objective was to investigate the airborne behaviour of Cryptomeria japonica pollen grains and its size-segregated allergenic (Cry j 1) particles as the airborne tracer of Cryptomeria japonica pollen during the Yellow Sand events. Airborne Cryptomeria japonica pollen grains and its size-segregated allergenic particles were collected at roadside of urban residential zones of Saitama city during the pollination periods from February to March in two year investigation of 2009 and 2010. The overlap of Yellow Sand events and dispersal peak of pollen grains was observed. According to the Meteorological data, we found that the peaks of airborne pollen grains appeared under higher wind speed and temperature than the previous day. It was thought that Yellow Sand events and airborne pollen counts were related to wind speed. From the investigation of the airborne behavior of the size-segregated allergen particles by determining Cry j 1 with Surface Plasmon Resonance (SPR), the higher concentrations of the allergenic Cry j 1 were detected in particle size equal to or less than $1.1{\mu}m$($PM_{1.1}$) than other particle sizes during Yellow Sand events, especially in the rainy day. We conclude that rainwater trapping Yellow Sand is one of the important factors that affect the release of allergenic pollen species of Cry j 1. Therefore, it is very important to clarify the relationships between Cryptomeria japonica pollen allergenic species and chemical contents of the Yellow Sand particles in further studies.