• Title/Summary/Keyword: UPEC

Search Result 17, Processing Time 0.027 seconds

Comparison of O-serogroups, Virulence Factors and Phylogenetic Groups of Uropathogenic Escherichia coli Isolated from Patients with Urinary Tract Infections between 2 Time Periods of 1989 and 2010-2014 at Gangwon Province in Korea

  • Park, Min;Kim, Seong-Mi
    • Biomedical Science Letters
    • /
    • v.28 no.2
    • /
    • pp.127-136
    • /
    • 2022
  • Uropathogenic Escherichia coli (UPEC) is main causative agent of urinary tract infections. They are classified based on various types of O antigen. UPEC strains commonly possess many genes encoding virulece-associated factors. E. coli strains are generally divided into four main phylogenetic groups. The virulence factor (VF) profiles of UPEC are related with their O-serogroups in each strains. A total of 681 strains of UPEC clinical isolates were collected from Korean healthcare facility (1989: 123 strains and 2010-2014: 558 strains). The UPEC clinical isolates were analyzed by polymerase chain reaction (PCR) methods. A total of 14 O-serotypes (O1, O2, O4, O6, O7, O8, O15, O16, O18, O21, O22, O25, O75 and O83), 6 virulence factors (papC, fimG/H, sfaD/E, hly1, cnf1 and usp) and phylogenetic groups were identified. The most prevalent O-serogroups were O6 (11.1%) in 1989 UPEC strains and O25 (21.0%) in 2010-2014 UPEC strains. The identified VFs, phylogenetic groups in 1989 UPEC strains and 2010-2014 UPEC strains were fimG/H and B2 group. In this study, O6 serotype was revealed the close relationships with VFs. Also, the distribution of prevalence O-serogroups of UPEC has been changed from O6 to O25 and virulence of UPEC strains was increased during past twenty-one years.

Characterization and Zoonotic Potential of Uropathogenic Escherichia coli Isolated from Dogs

  • Nam, Eui-Hwa;Ko, Sungjin;Chae, Joon-Seok;Hwang, Cheol-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.422-429
    • /
    • 2013
  • The aim of this study was to investigate the characteristics of canine uropathogenic Escherichia coli (UPEC) and the interaction between canine UPEC and human bladder epithelial cells. Ten E. coli isolates collected from dogs with cystitis were analyzed for antimicrobial resistance patterns, the presence of virulence factors, and biofilm formation. The ability of these isolates to induce cytotoxicity, invade human bladder epithelial cells, and stimulate an immune response was also determined. We observed a high rate of antimicrobial resistance among canine UPEC isolates. All virulence genes tested (including adhesins, iron acquisition, and protectin), except toxin genes, were detected among the canine UPEC isolates. We found that all isolates showed varying degrees of biofilm formation (mean, 0.26; range, 0.07 to 0.82), using a microtiter plate assay to evaluate biofilm formation by the isolates. Cytotoxicity to human bladder epithelial cells by the canine UPEC isolates increased in a time-dependent manner, with a 56.9% and 36.1% reduction in cell viability compared with the control at 6 and 9 h of incubation, respectively. We found that most canine UPEC isolates were able to invade human bladder epithelial cells. The interaction between these isolates and human bladder epithelial cells strongly induced the production of proinflammatory cytokines such as IL-6 and IL-8. We demonstrated that canine UPEC isolates can interact with human bladder epithelial cells, although the detailed mechanisms remain unknown. The results suggest that canine UPEC isolates, rather than dogspecific pathogens, have zoonotic potential.

Comparison of Fluoroquinolone Resistance Determinants in Uropathogenic Escherichia coli between 2 Time Periods of 1989 and 2010-2014 at Gangwon Province in Korea

  • Park, Min
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2020
  • Fluoroquinolone (FQ) resistant uropathogenic Escherichia coli (UPEC) have become a major problem in urinary tract infections (UTIs). The purpose of this study was to compare the quinolone resistance-determining region (QRDR) and plasmid mediated quinolone resistance (PMQR) determinants of FQ resistant UPEC between 1989 and 2010-2014. A total of 681 strains of UPEC clinical isolates was collected from Korean healthcare facility in 1989 (123 strains) and in 2010-2014 (558 strains). The minimum inhibitory concentrations (MICs) of FQs were determined by agar dilution method. QRDRs (gyrA, gyrB, parC and parE) and PMQR determinants (qnrA, qnrB, qnrS, aac(6')-Ib-cr and qepA) were analyzed polymerase chain reaction and sequencing method. Among 681 isolates, FQ resistant UPEC were 3 strains (2.4%) in 1989 isolates and 220 strains (39.4%) in 2010-2014 isolates. The rate of the FQ resistant UPEC strains in 2010-2014 isolates was increased than that of in 1989 isolates. UPEC isolates from 1989 and 2010-2014 were shown to carry mutations in gyrA (Ser83 and Asp87), gyrB (Ser464 and Thr469), parC (Ser80 and Glu84) and parE (Glu460, Ser458, Ile464 and Leu445). The most common mutations of QRDRs in 1989 isolates were Ser83Leu and Asp87Gly in gyrA and Ser80Ile in parC (2 strains: 66.7%) while those in 2010-2014 isolates were Ser83Leu and Asp87Asn in gyrA and Ser80Il2 and Glu84Val in parC (88 strains: 40.0%). PMQR determinants were detected only in 2010-2014 UPEC strains (47 strains: 21.4%).

Molecular typing of uropathogenic Escherichia coli isolated from Korean children with urinary tract infection

  • Yun, Ki Wook;Kim, Do Soo;Kim, Wonyong;Lim, In Seok
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.1
    • /
    • pp.20-27
    • /
    • 2015
  • Purpose: We investigated the molecular types of uropathogenic Escherichia coli (UPEC) by using conventional phylogrouping, multilocus sequence typing (MLST), and fimH genotyping. Methods: Samples of patients younger than 18 years of age were collected from the Chung-Ang University Hospital over 2 years. Conventional phylogenetic grouping for UPEC strains was performed by polymerase chain reaction (PCR). Bacterial strain sequence types (STs) were classified on the basis of the results of partial sequencing of seven housekeeping genes. In addition, we analyzed nucleotide variations in a 424-base pair fragment of fimH, a major virulence factor in UPEC. Results: Sixty-four UPEC isolates were analyzed in this study. Phylogenetic grouping revealed that group B2 was the most common type (n=54, 84%). We identified 16 distinctive STs using MLST. The most common STs were ST95 (35.9%), ST73 (15.6%), ST131 (12.5%), ST69 (7.8%), and ST14 (6.3%). Fourteen fimH allele types were identified, of which 11 had been previously reported, and the remaining three were identified in this study. f1 (n=28, 45.2%) was found to be the most common allele type, followed by f6 and f9 (n=7, 11.3% each). Comparative analysis of the results from the three different molecular typing techniques revealed that both MLST and fimH typing generated more discriminatory UPEC types than did PCR-based phylogrouping. Conclusion: We characterized UPEC molecular types isolated from Korean children by MLST and fimH genotyping. fimH genotyping might serve as a useful molecular test for large epidemiologic studies of UPEC isolates.

Comparison of Molecular Characteristics of Extended Spectrum ${\beta}$-lactamase Producing Escherichia coli Strains Isolated from Patients with Urinary Tract Infections between 2 Time Periods of 1989 and 2010 at Gangwon Province in Korea

  • Park, Min;Park, Soon Deok;Kim, Sa-Hyun;Lee, Gyusang;Woo, Hyun Jun;Kim, Hyun Woo;An, Byungrak;Jang, In Ho;Uh, Young;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.275-279
    • /
    • 2013
  • Etiological agents of extended spectrum ${\beta}$-lactamase (ESBL) producing uropathogenic Escherichia coli (UPEC) have become a major problem in urinary tract infections. The purpose of this study was to compare the molecular characteristics of ESBL producing UPEC strains isolated from 1989 and 2010. A total of 301 strains of UPEC clinical isolates was collected from Korean healthcare facility in 1989 (126 strains) and in 2010 (175 strains). UPEC clinical isolates were analyzed by multiplex polymerase chain reaction method (ESBL related bla genes and phylogenetic groups) and amplified fragment length polymorphism (AFLP). Among 301 isolates, ESBL producing UPEC were 8 strains (6.3%) in 1989 isolates and 35 strains (20%) in 2010 isolates. The rate of bla genes in ESBL producing UPEC from 1989 isolates and 2010 isolates were $bla_{TEM}$ (75% and 85.7%), $bla_{CTX-M}$ (0% and 91.4%), $bla_{OXA}$ (25% and 20%), $bla_{PER}$ (0% and 2.9%). The distribution of phylogenetic groups in 1989 isolates and 2010 isolates were A (37.5% and 11.4%), B2 (12.5% and 51.4%), and D (50% and 37.1%). The most prevalent ESBL related bla gene and phylogenetic group were $bla_{CTX-M}$ (91.4%) and B2 (51.4%) in 2010 isolates, while $bla_{CTX-M}$ was not detected in 1989 isolates. Among 43 ESBL producing UPEC were grouped into 12 clusters up to 76% of genetic similarities by AFLP analysis. During past twenty one years, the rate of the ESBL producing UPEC strains in 2010 isolates was increased than that of in 1989 isolates. Also, the most prevalent ESBL related bla gene has been changed from $bla_{TEM}$ to $bla_{CTX-M}$.

Immunization with a Genetically Engineered Uropathogenic Escherichia coli Adhesin-Escherichia coli Enterotoxin Subunit A2B Chimeric Protein

  • Lee, Yong-Hwa;Kim, Byung-O;Pyo, Suhk-Neung
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.101-106
    • /
    • 2005
  • The generation of secretory IgA antibodies (Abs) for specific immune protection of mucosal surfaces depends on stimulation of the mucosal immune system, but this is not effectively achieved by parenteral or even oral administration of most soluble antigens. Thus, to produce a possible vaccine antigen against urinary tract infections, the uropathogenic E. coli (UPEC) adhesin was genetically coupled to the heat-labile Escherichia coli enterotoxin A2B (ltxa2b) gene and cloned into a pMAL-p2E expression vector. The chimeric construction of pMALfimH/ltxa2b was then transformed into E. coli K-12 TB1 and its nucleotide sequence was verified. The chimeric protein was then purified by applying the affinity chromatography. The purified chimeric protein was confirmed by SDS-PAGE and westem blotting using antibodies to the maltose binding protein (MBP) or the heat labile E. coli subunit B (LTXB), plus the N-terminal amino acid sequence was analyzedd. The orderly-assembled chimeric protein was confirmed by a modified $G_{M1}$-ganglioside ELISA using antibodies to adhesin. The results indicate that the purified chimeric protein was an Adhesin/LTXA2B protein containing UPEC adhesin and the $G_{M1}$-ganglioside binding activity of LTXB. thisstudy also demonstrate that peroral administration of this chimeric immunogen in mice elicited high level of secretory IgA (sIgA) and serum IgG Abs to the UPEC adhesin. The results suggest that the genetically linked LTXA2B acts as a useful mucosal adjuvant, and that adhesin/LTXA2A chimeric protein might be a potential antigen for oral immunization against UPEC.

Induction of a systemic IgG and secretory IgA responses in mice by peroral immunization with uropathogenic Escherichia coli adhesin protein coupled to cholera toxin A2B subunits

  • Lee, Yong-Hwa;Kim, Byung-Oh;Rhee, Dong-Kwon;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • v.11 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • The generation of secretory IgA antibodies(Abs) for specific immune protection of mucosal surfaces depends on stimulation of the mucosal immune system, but this is not effectively achieved by parenteral or even oral administration of most soluble antigens. Thus, to produce a possible vaccine antigen against urinary tract infections, the uropathogenic E. coli (UPEC) adhesin was genetically coupled to the ctxa2b gene and cloned into a pMAL-p2E expression vector. The chimeric construction of pMALfimHIctxa2b was then transformed into E. coli K-12 TB1 and its nucleotide sequence was verified. The chimeric protein was then purified by applying the affinity chromatography. The purified chimeric protein was confirmed by SDS-PAGE and western blotting using antibodies to the maltose binding protein (MBP) or the cholera toxin subunit B (CTXB), plus the N-terminal amino acid sequence was analyzed. The orderly-assembled chimeric protein was confirmed by a modified $G_{M1}$-ganglioside ELISA using antibodies to adhesin. The results indicate that the purified chimeric protein was an Adhesin/CTXA2B protein containing UPEC adhesin and the $G_{M1}$-ganglioside binding activity of CTXB. This study also demonstrate that peroral administration of this chimeric immunogen in mice elicited high level of secretory IgA and serum IgG Abs to the UPEC adhesin. The results suggest that the genetically linked CTXA2B acts as a useful mucosal adjuvant, and that the adhesin/CTXA2B chimeric protein might be a potential antigen for oral immunization against UPEC.

Comparison of Virulence Factors, Phylogenetic Groups and Ciprofloxacin Susceptibility of Escherichia coli Isolated from Healthy Students and Patients with Urinary Tract Infections in Korea

  • Park, Min;Park, Soon-Deok;Kim, Sa-Hyun;Woo, Hyun-Jun;Lee, Gyu-Sang;Kim, Hyun-Woo;Yang, Ji-Young;Cho, Eun-Hee;Uh, Young;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2012
  • Urinary tract infection (UTI) is one of the most common bacterial infections and is predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC strains generally possess several genes encoding virulent factors, which are mostly adhesins, toxins, bacteriocin and siderophores. E. coli is composed of four main phylogenetic group (A, B1, B2, D) and virulent extra-intestinal strains mainly belong to groups B2 and D. Prescription of ciprofloxacin, a kind of fluoroquinolone group antibiotics, is increasing now a days, but resistance to this drug is also increasing. A total of 188 strains of E. coli were collected. Thirteen strains were collected from healthy students in 2011 and 175 strains from patients with urinary tract infection in 2010. Virulence factor genes (papC, fimG/H, sfaD/E, hlyA, cnf1, and usp) were amplified by polymerase chain reaction (PCR) methods for phylogenetic group (A, B1, B2, D) detection. Ciprofloxacin susceptibility test was performed by disk diffusion method. The identified virulence factors (VFs), phylogenetic groups and ciprofloxacin resistance in 13 E. coli strains isolated from healthy students were papC (15.4%), fimG/H (76.9%), sfaD/E (30.8%), hlyA (23.1%), cnf1 (23.1%), usp (7.7%), phylogenetic group A (23%), B1 (8%), B2 (46%), D (23%) and ciprofloxacin resistance (7.7%), while those of in 175 E. coli strains isolated from patients with UTI were papC (41.1%), fimG/H (92.5%), sfaD/E (30.3%), hlyA (10.3%), cnf1 (30.3%), usp (27.4%), phylogenetic group A (9.1%), B1 (5.1%), B2 (60.6%), D (25.1%) and ciprofloxacin resistance (29.7%). In this study, 10 out of 13 E. coli strains (76.9%) from healthy students were found to possess more than one virulence factor associated with adhesion. In addition, one E. coli strain isolated from healthy students who had never been infected with UPEC showed ciprofloxacin resistance. According to these results between the virulence factors and phylogenetic groups it was closely associated, and UPEC strains isolated from patients showed high level of ciprofloxacin resistance.

Comparative Analysis of Uropathogenic Escherichia coli ST131 and Non-ST131 Isolated from Urinary Tract Infection Patients in Daejeon (대전지역의 요로감염 환자로부터 분리된 요로병인성 대장균 ST131과 Non-ST131의 비교 분석)

  • Cho, Hye Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.342-348
    • /
    • 2020
  • Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs), which is one of the most common infectious diseases in humans worldwide. Since UPEC is increasingly gaining resistance to many antimicrobial agents, antibiotic therapy of UTI has recently become a great concern. This study examined the epidemiological relationship, and antimicrobial resistance patterns of 84 UPEC isolates obtained from UTI patients in Daejeon, from March to December 2017. Molecular epidemiology was investigated by multilocus sequence typing (MLST), and an antimicrobial susceptibility test was determined using an E-test. In this study, UTI was more common in females (73.8%) than in males (26.2%), and the highest incidence of UTI was observed in the age group in their 70s. Among the 84 UPEC isolates, 59 isolates (70.2%) were multidrug-resistant (MDR), and the major sequence type was ST131 (44 isolates, 52.4%). Interestingly, the rates of MDR in non-ST131 isolates (72.5%) were higher compared to ST131 isolates (68.2%). These results indicate the possibility of the development and spread of MDR in non-ST131 isolates. Effective surveillance networks and continuous research need to be conducted globally to prevent the emergence and international spread of MDR non-ST131 isolates.

Uropathogenic Escherichia coli ST131 in urinary tract infections in children

  • Yun, Ki Wook;Lee, Mi-Kyung;Kim, Wonyong;Lim, In Seok
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.7
    • /
    • pp.221-226
    • /
    • 2017
  • Purpose: Escherichia coli sequence type (ST) 131, a multidrug-resistant clone causing extraintestinal infections, has rapidly become prevalent worldwide. However, the epidemiological and clinical features of pediatric infections are poorly understood. We aimed to explore the characteristics of ST131 Escherichia coli isolated from Korean children with urinary tract infections. Methods: We examined 114 uropathogenic E. coli (UPEC) isolates from children hospitalized at Chung-Ang University Hospital between 2011 and 2014. Bacterial strains were classified into STs by partial sequencing of seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Clinical characteristics and antimicrobial susceptibility were compared between ST131 and non-ST131 UPEC isolates. Results: Sixteen UPEC isolates (14.0%) were extended-spectrum ${\beta}-lactamase$ (ESBL)-producers; 50.0% of ESBL-producers were ST131 isolates. Of all the isolates tested, 13.2% (15 of 114) were classified as ST131. There were no statistically significant associations between ST131 and age, sex, or clinical characteristics, including fever, white blood cell counts in urine and serum, C-reactive protein, radiologic abnormalities, and clinical outcome. However, ST131 isolates showed significantly lower rates of susceptibility to cefazolin (26.7%), cefotaxime (40.0%), cefepime (40.0%), and ciprofloxacin (53.3%) than non-ST131 isolates (65.7%, 91.9%, 92.9%, and 87.9%, respectively; P<0.001 for all). ESBL was more frequently produced in ST131 (53.3%) than in non-ST131 (8.1%) isolates (P<0.01). Conclusion: ST131 E. coli isolates were prevalent uropathogens in children at a single medical center in Korea between 2011 and 2014. Although ST131 isolates showed higher rates of antimicrobial resistance, clinical presentation and outcomes of patients were similar to those of patients infected with non-ST131 isolates.