• Title/Summary/Keyword: UMOS

Search Result 4, Processing Time 0.016 seconds

Development of Updateable Model Output Statistics (UMOS) System for the Daily Maximum and Minimum Temperature (일 최고 및 최저 기온에 대한 UMOS (Updateable Model Output Statistics) 시스템 개발)

  • Hong, Ki-Ok;Suh, Myoung-Seok;Kang, Jeon-Ho;Kim, Chansoo
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.73-89
    • /
    • 2010
  • An updateable model output statistics (UMOS) system for daily maximum and minimum temperature ($T_M$ and $T_m$) over South Korea based on the Canadian UMOS system were developed and validated. RDAPS (regional data assimilation and prediction system) and KWRF (Korea WRF) which have quite different physics and dynamics were used for the development of UMOS system. The 20 most frequently selected potential predictors for each season, station, and forecast projection time from the 68 potential predictors of the MOS system, were used as potential predictors of the UMOS system. The UMOS equations were developed through the weighted blending of the new and old model data, with weights chosen to emphasize the new model data while including enough old model data to ensure stable equations and a smooth transition of dependency from the old model to the new model. The UMOS equations are being updated by every 7 days. The validation results of $T_M$ and $T_m$ showed that seasonal mean bias, RMSE, and correlation coefficients for the total forecast projection times are -0.41-0.17 K, 1.80-2.46 K, and 0.80-0.97, respectively. The performance is slightly better in autumn and winter than in spring and summer. Also the performance of UMOS system are clearly dependent on location, better at the coastal region than inland area. As in the MOS system, the performance of UMOS system is degraded as the forecast day increases.

Development of a System for Selecting High-Quality Mold Manufacturing NC Data Using Evaluating the NC Data (NC 데이터 정량화를 통한 고품질 사출금형 NC 가공데이터 선정 방안)

  • Heo Eun-Young;Kim Bo-Hyun;Kim Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.99-108
    • /
    • 2006
  • Since mold industries are regarded as belonging to three types of bad business, capable young people are reluctant to work in this field. The industries are hard to employ skilled workers who have much experience and knowledge On the mold manufacturing. Thus, effective CAM systems are required for unskilled workers to create process plans and NC data for the manufacturing, and process plans play important roles in the downstream manufacturing processes, such as NC machining, polishing, and final assembly. This study proposes a decision support system that facilitates unskilled workers to easily select high quality NC-data, as well as to increase productivity. The proposed system is assumed to follow a CAM operation scenario that consists of next three steps: 1) identifying several process plans and enumerating feasible unit machining operations (UMOs) from material and part surface information, 2) creating all feasible NC-data based on UMOs using a commercial CAM system, 3) selecting the best NC data among the feasible NC data using four screening criteria, such as machining accuracy, machining allowance, cutting load, and processing time. A case study on the machining of a camera core mold is provided to demonstrate the proposed system.

Development of a decision support system for high quality NC data selection in mold manufacturing (고품질의 사출금형 NC 가공 데이터 선정을 위한 의사결정지원시스템 개발)

  • Heo, Eun-Young;Kim, Bo-Hyun;Kim, Dong-Won;Cho, Min-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1101-1107
    • /
    • 2005
  • Mold industry has the difficulty to employ young people as the successors of the skilled workers, because it has been regarded as a 3D-jobs(dirty, difficult, and dangerous). To overcome this situation, thus, manufacturing technologies maintained in the factory should be systemized, and engineering systems should support unskilled workers to do their jobs without any difficulty. As a research of developing the supporting system, this study proposes a decision support system that facilitates unskilled workers to easily select high quality NC-data, as well as to increase productivity. The proposed system is assumed to follow a CAM operation scenario that consists of next three steps: 1) identifying several process plans and enumerating feasible unit machining operations (UMOs) from material and part surface information, 2) creating all feasible NC-data based on UMOs using a commercial CAM system, 3) selecting the best NC data among the feasible NC data using four screening criteria, such as machining accuracy, machining allowance, cutting load, and processing time. A case study on the machining of a camera core mold is provided to demonstrate the proposed system.

  • PDF

Structured Modeling of Sculptured Surface Machining Process (자유곡면 가공공정의 정형화된 모델링)

  • 김대현;김보현;편영식;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.192-200
    • /
    • 1998
  • Even though most die-maker are using CAD/CAM systems rout NC tool-path generation, “front-end”CAD/CAM technologies have not been fully adapted to sculptured surface machining(SSM) nor are sufficiently utilized in die shops. This gap between die-making industry and CAD/CAM community persists mainly because of the lack of a SSM-process model through which the two groups communicate with each other. Proposed in this paper is a model of SSM-processes which is built around the concepts of machining stages, unit machining operations, and each machining stage is decomposed into a sequence of unit machining operations(UMOs). Identified in the paper are five machining stages and 17 types of UMO. Based on the framework of the proposed model, an example of inner-panel stamping-die machining processes is described in detail.

  • PDF